
AD-A240 608

Carnegie Mellon University

Software Engineering Institute

- DTIC
11 rr-TE

SEP23 1991 i .

Slang
Reference
Manual

91-11234

0 0 0 0) 0 0 0I 0P 0b 0 0 0 aJ a 0D 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0

System for User Version Date
Interface Development May 1991

This do-imet ha eeen opproved

foi public rle, -e arnd 3ale; its (4 1-t-; Utior is u l-n itd.

-- ~ ~ ~ ~ ~ ~~i •~ j • , , I I II I I I II .Ii

User's Guide
CMU/SEI-91-UG-5

May 1991

Serpent: Slang Reference Manual

LII'

I -

User Interface Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

0

This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this document should not be construed as an
official DoD position. It is published in the interest of scientific and
technical information exchange.

Review and Approval

This document has been reviewed and is approved for publication.

FOR THE COMMANDER 0

Cl-'~res. aM or, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the D-parfment of Defense.

Copyright © 1991 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document ar- also availm 1c thn-ugh the National Technical Information Service. For information on
n.dviria Dleap contaCt NTIS directly: National Technical Information Service, US. Department of Commerce,
Springfield, VA 22161.

Use of any trademarks in this document is not intended in any way to infringe on the rights of the trademark holder.

I I I I I 0

Table of Contents

1 Introduction 1
1.1 This Manual 1

1.1.1 Organization 1
1.1.2 Typographical Conventions 1

1.2 Documentation 1

2 Serpent Overview 5
2.1 Serpent Architecture 6
2.2 Shared Database 8
2.3 Serpent Components 9

3 Slang Overview 11
3.1 Interaction Objects 11

3.1.1 Attributes 11
3.1.2 Methods 13

3.2 Variables 14
3.3 Data Dependencies 16
3.4 View Controllers 16
3.5 Shared Data 22
3.6 Dialogue Shared Data 24
3.7 Actions ON CREATE and ON DESTROY 25
3.8 Dialogue Structure 26

4 Lexical Elements 29
4.1 Character Set 29
4.2 Comments 29
4.3 Tokens 30

4.3.1 Operators and Special Characters 30
4.3.2 Identifiers 31
4.3.3 Reserved Words 31
4.3.4 Constants 32

5 Data 35
5.1 Different Forms of Data 35
5.2 Assigiiizit ol "Vluc to DaLd Types 35

5.3 Object Types 36

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) i

5.4 Data Types 36
5.5 Base Types 37
5.6 Dependency 37

5.7 Scope and Visibility 39
5.8 Extent 42
5.9 Data Access 42

5.10 Declared Data 43 0
5.10.1 View Controllers 43
5.10.2 Objects 44
5.10.3 Attributes 44
5.10.4 Methods 45
5.10.5 Shared Data 45
5.10.6 Dialogue Shared Data 46
5.10.7 Application Shared Data 47

5.11 Data Reference 47
5.11.1 Dialogue Structure 48
5.11.2 Direct Reference 48
5.11.3 Indirect Reference 49
5.11.4 Examples of Data Reference 49

6 Expressions 53
6.1 Undefined Values 53
6.2 Logical AND and OR Operators 53
6.3 Equality Operators 54
6.4 Relational Operators 55
6.5 Arithmetic Operators 56
6.6 Unary Operators 58

7 Code Snippets and Statements 59
7.1 Function Call 59

7.2 Assignment Statement 60
7.3 Conditional Statement 60
7.4 Loop Statement 61 •

8 Interaction Objects 63
8.1 Attributes 6S
8.2 Methods 64

0

b ~ Scrperu: Slang Reference Manual (CMU/SEI-91-UG-5)

I I r I I I0

9 View Controllers 67
9.1 Creation Conditions 67
9.2 Actions "On Create" 69
9.3 Actions on Destroy 69
9.4 Dependency Considerations 70
9.5 Dialogue Structure 71

9.5.1 Prologue 71
9.5.2 Component List 72

10 User-Defined Functions 75
10.1 External Functions 75
10.2 Existing External Functions 76

10.2.1 Slang String Functions 17
sting-append 78
string-countchars 79
string-delete 80
string-index 81
string-insert 82
string-is-integer 83
string-is-real 84
string-length 85
stringlower 86
string-upper 87
substring 88
div 90
makeinteger, truncate 91
mod 92

10.3.1 Existing C functions 93
10.3.2 Creating New External Functions 94
10.3.3 Type Equivalences 94
10.3.4 Memory Allocation Considerations 95
10.3.5 Linking External Functions To Slang Programs 97

11 Runtime System 99
11.1 Cycles 99
11.2 Timing of Data Transfers to Application and Toolkit 99
11.3 Implications of Dependencies 100

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) iii

12 Slang Preprocessor 101
12.1 Macros and Conditiotal Compilation 101

Appendix A Glossary of Terms 103

Appendix B Slang BNF Grammar 107

Appendix C Runtime Conversions 113

Appendix D Data Access Routines 119 0
get-bound sd instance 120
getvariablevalue 121
getname 122
get-object 123
getparentvc 124
put.variablevalue 125
get vc 126

Appendix E Shared Data Routines 127
create sd instance 128
destroy -sdinstance 129
get sdvalue 130
put sd value 131

Appendix F Utility Routines 133
exit 134
idexists 135
new 137
recording-on 138 0
recording-off 139

Appendix G Athena Widget Set 141
XawBboard 143
XawBox 146 •
XawCommand 149
XawDialog 153
XawForm 156
XawLabel 159
XawMenuButton 162
XawMenuShell 165
XawPaned 168
XawScreenObject 172
XawScrollbar 173 0

iv Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

XawShinpleMenu 176
XawS inpleMenuBSB 179
XawSrneLine 182
XawText 185
XawTextentry 190
XawToggleButton 195
XawTopLevelShell 199
XawViewport 201

Appendix H Motif Widget Set 205
XmArrowButton 207
XmBu IletinBoard 210
XmCas cadeButton 214
XmConand 218
XmDra wingArca 223
XmDra wnB utton 226
XmErrorDialog 230
XmFileSelectionBox 234
XmForm 239
XmFrame 243
XmlnformationDialog 246
Xmlatcl 250
XmList 253
XmMainWindow 258
XmMenubar 262
XmMenuShell 266
XmMessageBox 269
XmMessageDialog 273
XmOpi ion 277
XmPanedWindow 281
XmPopup 284
XmPul [down 288
XmPushButton 292
XmQuestionDialog 296
XmRowColumn 300
XmScale 304
XmScreenObject 308
XmScrollBar 309
XmScrolled Window 312
XmSeparator 315

Serpent; Slang Reference Manual (CMU/SEI-91 -UG-5) v

,,r-Ptext318

XmToggleButton 3231
XmTopLevelShell 327
XmWamingDialog 330
XmWorkingDialog 334

Index 339

vi Srpe : Slng efernceManal (hfUSEI-1 -G-0

List of Examples

Example 3-1 Attributes 12
Example 3-2 Methods 13
Example 3-3 Dialogue Variables 15
Example 3-4 Menu Bar 22
Example 3-5 View Controller Template 24
Example 3-6 Calculating Aggregate Functions 26
Example 5-1 Automatic Conversion 36
Example 5-2 Fixed Data Type 36
Example 5-3 Dynamic Data Type 36
Example 5-4 Dependency Propagation 38
Example 5-5 Multiple Snippet Infinite Loop 38
Example 5-6 Snippet Dependent On Defined Variable 39
Example 5-7 Snippet Dependent On Variable Both Modified and Used 39
Example 5-8 Scope and Visibility in an Abstract Block Structured

Language 40
Example 5-9 Dialogue Shared Data Creation 47
Example 5-10 Dialogue Shared Data Destruction 47
Example 5-11 Direct Reference 48
Example 5-12 Employee Shared Data Definitions 49
Example 5-13 Direct Data Referencing 50
Example 5-14 Indirect Data Referencing 51
Example 6-1 Equality Comparison 55
Example 6-2 Relational Comparison 56
Example 6-3 Arithmetic Operation 57
Example 7-1 Function Call Statements 59
Example 7-2 Assignment Statements 60
Example 7-3 Conditional Statements 61
Example 7-4 While Statement 62
Example 8-1 Attributes 64
Example 8-2 Methods 65
Example 9-1 Free Creation Conditions 68
Example 9-2 Bound Creation Conditions 68
Example 9-3 Actions on Create 69
Example 9-4 Actions on Destroy 70
Example 10-1 External Declarations 76

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) vii

0

0

0

viii Serpent Slang Reference Man-,al (CMU/SEI-91 -UG-S)

List of Figures

Figure 1-1 Serpent Documents 2
Figure 2-1 Serpent Architecture 6

Figure 2-2 Serpent Shared Database 9

Figure 3-1 Label Widget 12

Figure 3-2 Command Widget Display 14
Figure 3-3 Drop-Down Menu 17

Figure 3-4 Shared Data Definition 23

Serpen. 'flang Reference Manual (CMU/SEI-91-UG-5) ix

x Sepen: SangRefeenc Maual(CMUSEI91-G-5

0D

List of Tables

Table 4-1 Reserved Words 32
Table 4-2 Character Escape Codes 33
Table 5-1 Base Types 37
Table 6-1 AND Operations 54
Table 6-2 OR Operations 54
Table 6-3 Equality Operators 54
Table 6-4 Relational Operators 55
Table 6-5 Arithmetic Operators 56
Table 6-6 Plus, Minus, Multiple and Exponential Operations 57
Table 6-7 Divide Operation 57
Table 6-8 Unary Operators 58
Table 6-9 Unary Operations 58
Table 10-1 Slang String Functions 77
Table 10-2 Extended Arithmetic Functions 89
Table 12-1 Binary Arithmetic 113
Table 12-2 Relational Operations 114
Table 12-3 Assignment Operations 115
Table 12-4 Unary Arithmetic Operations 116
Table 12-5 Equality Operations 116

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) xi

0

0

0

0

0

0

0

0

xii Serpent: Slang Reference Manual (CMU/SEI-91-UG-S)

0

Introduction

1 Introduction
Serpent is a user interface management system (UIMS) that supports the development and
execution of the user interface of a software system from the prototyping phase through
production and maintenance. Serpent encourages a separation of functionality between the
user interface and application portion of a system. Serpent is also easily extended to support
additional input/output (I/O) toolkits.

This manual describes the model, syntax, and semantics of the Slang dialogue language, the
language within Serpent used for the specification of user interfaces.

1.1 This Manual

This manual serves two purposes: to provide an introduction to Slang and to provide a
reference manual for Slang. Readers should be familiar with general UIMS concepts, have
a working knowledge of programming languages, and understand the concepts described
in Serpent Overview and Serpent: System Guide.

1.1.1 Organization

The first three chapters provide an introduction to Slang. The remainder of the manual
provides syntactic and semantic information about Slang.

1.1.2 Typographical Conventions

The following conventions are observed in this manual.

Code examples Courier typeface

Variables, attributes, etc. Courier typeface

Syntax Courier typeface

Warnings and Cautions Bold, italics

1.2 Documentation

This reference manual describes the model, syntax, and semantics of the Slang dialogue
language. The following publications address other aspects of Serpent

Serpent Overview
Introduces the Serpent system.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) I

introduction

Serpent. System Guide
Describes installation procedures, specific input/output file descriptions for intermediate
sites and other information necessary to set up a Serpent application.

Serpent: Saddle User's Guide
Describes the language that is used to specify interfaces between an application and
Serpent.

Serpent: Dialogue Editor User's Guide
Describes how to use the editor to develop and maintain a dialogue.

Serpent: C Application Developer's Guide
Serpent. Ada Application Developer's Guide
Describe how the application interacts with Serpent. These guides describe the runtime
interface library, which includes routines that manage such functions as timing, notification
of actions, and identification of specific instances of the data.

Serpent: Guide to Adding Toolkits
Describes how to add user interface toolkits such as various Xt-based widget sets to Serpent
or to an existing Serpent application. Currently, Serpent includes bindings to the Athena
Widget Set and the Motif Widget Set.

2 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Introduction

The following figure shows Serpent documentation in relation to the Serpent system:

Dialogue e_
Saddle Editor '0

layer rlayer layer Toolkts

Figure 1-1 Serpent Documents

Serpen. Slang Reference Manual (CMU/SEI-91-UG-5) 3

Introduction

4 Serpent. Slang Reference Manual (CMU/SEI-91 -UG-5)

Serpent Overview

2 Serpent Overview
Serpent manages the total dynamic behavior of an interface and allows an application to be
separated from the details of the user interface. Serpent is designed to manage relatively
arbitrary toolkits. There is a language to describe the interface and an editor to build it.
Serpent provides a runtime system that enables communication between the application
and the end user.

Serpent supports the incremental development of the user interface from prototyping

through production and maintenance. Serpent can be used either with an application in a
production environment or without an application in a prototyping environment.

A primary goal of Serpent is to encourage the separation of a software system into an

application portion and a user interface portion. This provides the application developer
with a fixed application programmer's interface. One benefit of a fixed application
programmer's interface is that the application programmer is insulated from the
modifications to the user interface that are the most likely modifications to a completed

system. Another benefit of using Serpent is that it provides the tools to develop and modify
the user interface. A system developed using Serpent can be migrated to new toolkits
without time-consuming reengineering of the application portion.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 5

Serpent Overview

2.1 Serpent Architecture

Serpent is implemented using the standard UIMS architecture defined by the Seeheirn

working group on graphical interfaces (see User Interface Management Systems, G. E.
Pfaff, ed, Eurographics Seminars, Springer-Verlag, 1985). The architecture consists of

three layers: presentation, dialogue, and application (Figure 2-1).

/ dialogue4
manager dialogue.

.=. 1 4. /. .

-E~-

X/

interface

Figure 2-1 Serpent Architecture

6 Serpent: Slang Reference Manual (CMtJ/SEI-91-UG-5)

Serpent Overview

The architecture is intended to encourage the proper separation of functionality between the
application and the user interface portions of a software system. The three different layers
of the standard architecture provide differing levels of control over user input and system
output. The presentation layer is responsible for layout and device issues. The dialogue
layer specifies the presentation of application information and user interactions. The
application layer provides the functionality for the system.

The presentation layer consists of toolkits that have been incorporated into Serpent.
Toolkits are existing hardware/software systems that perform some level of generalized
interaction with the end user. Serpent is distributed with an interface to the X Window
System (Version 11), to the MIT Athena Widget Set, and to the OSF/Motif Toolkit. Other

toolkits based on the X Window System Intrinsics can be easily integrated into Serpent, and
toolkits not based on the X Window System Intrinsics can be integrated without undue
difficulty. Refer to the Serpent: Guide to Adding Toolkits for a discussion of how to do this.

The end-user interface for a software system is formally specified as a dialogue in Serpent.
The dialogue specifies both the presentation of application information and end-user
interactions.

The application provides the functional portion of the software system in a presentation-
independent manner. It may be developed in C, Ada, or other programming languages (only
C and Ada are supported at this time). The application may be either a functional simulation
for prototyping purposes or the actual application for a delivered system. The actions of the
application layer are based on knowledge of the specific problem domain. Serpent: C
Application Developer's Guide and Serpent: Ada Application Developer's Guide describe
how an application interacts with Serpent.

One way of viewing the three levels of the architecture is by the level of functionality
provided for user input. The presentation layer is responsible for lexical functionality, the

dialogue layer for syntactic functionality, and the application layer for semantic
functionality. For example, in processing the selection of a menu item, the presentation
layer is responsible for determining which menu item was selected and for presenting some
indication to the end user of which item is currently selected. The dialogue layer is

responsible for deciding whether another item is to be selected and for presenting it to the
end user, or whether the choic, requires action by the application. The application layer is
responsible for executing those functions specific to the application. In another example, in
processing a change in the status of the application, the application would detect the change
in status and inform the dialogue layer of the new status. The dialogue layer would decide

that the change in status requires a form to appear on the display, and the presentation layer
would actually make the form visible to the end user.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 7

Serpent Overview

2.2 Shared Database

Serpent provides an active database model for communication among the application, the

dialogue, and the toolkits. In an active database, multiple processes are allowed to update

a single database. Changes are then propagated to each user. This model is implemented in

Serpent by a shared database that logically exists between the application and toolkits. The

application can add, modify, query, or remove data from the shared database. Information

provided to Serpent by the application is available for presentation to the end user. The

application has no knowledge of the presentation media or user interface styles used to

present this information.

The application and the Slang program exchange data through the shared database. Figure

2-2 illustrates die use of the shared database in Serpent. When the application modifies data

in the shared database, the portions of the Slang program that depend upon that data are

automatically executed. When the Slang program modifies data in the application portion

of the shared database, the application is notified. The section of the shared database that is

associated with the application layer, application shared data, is accessible only from the

application layer and the dialogue layer.

The presentation layer also communicates with the dialogue layer via shared data. The

section of the shared database that is associated with the presentation layer, toolkit shared

data, is accessible only from the presentation layer and the dialogue layer.

8 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Serpent Overview

Athena Widget

Application

Technology "Z'
" tapplication tool, Tehloy

shared data sl~zred data

local
data

dialogue layer

Figure 2-2 Serpent Shared Database

Serpent allows the specification of dependencies between elements in the shared database.
These dependencies define a mapping between application data, presentation objects, and
end-user input. The dialogue manager enforces the constraints implied by these

dependencies by operating on the information stored in the shared database until the
constraints are satisfied. Changes are then propagated to either the application or the

toolkits as appropriate.

The type and structure of information that can be maintained in the shared database is

defined externally in a shared data definition file. The structure in the shared data definition
file corresponds to the database concept of schemata. A shared data definition file is

required for each application; Serpent: Saddle User's Guide describes how to construct this
file.

2.3 Serpent Components

Serpent consists of the following components:

• A language designed for the specification of user interfaces (Slang). This
language is compiled into the dialogue layer of the Serpent architecture.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 9

Serpent Overview

" A database-like schema language (Saddle) to define the interface between the
application and Serpent. Applications ,nd toolkits written in either C or Ada
can be used with Serpent, although the interface description mechanism is
designed to be extensible to other languages.

" A transaction processing library that is linked to the application layer to
provide access to Serpent.

" An interactive editor for the specification of dialogues and for the construction
and preview (,f displays.

" Input/output toolkits. The use of Serpent depends upon the types of toolkits
that have been integrated.

10 Serpent Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

3 Slang Overview
Serpent dialogues -are specined in Slang. These dialogues define the presentation of
application information to, as well as interactions with, the end user.

This chapter describes the overall dialogue model used by Serpent. The dialogue model
provides the conceptual basis for dialogue specification. This model is based largely on the
data-driven, rule-based approach used in production systems.

3.1 Interaction Objects

Interaction objects, which are defined by a given toolkit, allow user interaction with the
application. Each interaction object has a particular appearance and behavior. The behavior
determincs how the object responds to end-user input. In a display technology, for example,
text fields, circles, or rectangles may be defined as interaction objects. In voice technology,
voice messages or recordings may be defined as interaction objects.

Interaction objects are specified by the designer in a dialogue and presented to the end user
by the presentation layer. The objects used as examples in this document are based on
Athena widgets. The Athena Widget Set is one of the initial toolkits supported by Serpent.
A description of the supported Athena widget object, is provided in Appendix G. A
description the OSF/Motif widgets is provided in Appendix H.

A dialogue is defined by a Slang program, and each Slang program enumerates a collection
of objects to be available to the end user. Examples of iteraction objects defined for the
Athena Widget Toolkit are command widgets and text widgets.

Each object type has a collection of attributes that defines its presentation, as well as
methods that determine the high-level interactions that the end user can have with the
object. Objects are specified in a Slang program by listing the objects to be created and the
attribute values to be assigned to each occurrence of the object. See Chapter 8 for details.

3.1.1 Attributes

Interaction objects have attributes to define the presentation characteristics. These
attributes are defined by the toolkit integrator and their values are specified by the dialogue
developer.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 11

Slang Overview 0

Example 3-1 provides the Slang specification for a label widget. A label widget is n
Athena widget that provides a non-selectable rectangular label. Once defined, the
interaction object is displayed to the end user using the toolkit that supports this object. The

object defined in Example 3-1 causes a box (label widget) containing the value 0 to be
displayed as illustrated in Figure 3-1.

display: XawLabel
Attributes:

parent: mainbackground;
height: 40;
width: 60;
label- 0;

font: '9xl5bold";
vertDistance: 100;
horizDistance: 175;

Example 3-1 Attributes

Figure 3-1 Label Widget 0

The label widget is generated as an independent window that the end user can position.

12 Serpen: Slang Reference Manual (CMU/SEI-91-UG-5)

PSlang Overview

3.1.2 Methods

Interaction objects also have methods that are defined by the toolkit. Methods provide a way
for handling end-user interactions in the dialogue by specifying actions to be performed for
specific, end-user generated events. For example, the interaction object in Example 3-2 is
declared as a command widget. A command widget is an Athena widget object that
provides a display button that may be selected by the end user. The Athena Widget toolkit
generates a notify event for the object when the command widget on the display is
selected.

pushbutton: XawCommand

Attributes:

parent: mainbackground;

height: 40;

width: 60;

vertDistance: 200;

horizDistance: 175;

font: "9xl5bold";

label: "Push";

Methods:

notify:

display.label:= display.label + 1;

Example 3-2 Methods

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 13

I

Slang Overview

The button object defined in Example 3-2 causes a command widget to be displayed that
contains the value Press. When selected, the command widget will generate a notify event
that causes the notify method in the button definition to be executed. In this case,

execution of the method causes the text attribute of the display object defined to be
incremental. Figure 3-2 illustrates the display of both objects after the command widget has

been pressed.

w

Figure 3-2 Command Widget Display

It is interesting to note that in the preceding example the label attribute of the XawLabel
is actually defined as a string, while the numeric constant . is an integer. All type 0
con ersion is handled automatically by Slang.

3.2 Variables

Slang also allows for the specification of dialogue variables. Variables can be used for
defining object attributes and for defining control flow as described later in this chapter. The
preceding example can be rewritten to make use of local variables.

Variables: 0
counter: 0;

Objects:
display: XawLabel
Attributes:

parent: mainbackground;
height: 40; 0

14 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

width: 60;

vertDistance: 100;

horizDistance: 175;

font: "9xl5bold";

label: counter;

button: XawConnand I

Attributes:

parent: mainbackground;

height: 25;

width: 25;

vertDistance: 200;

horizDistance: 175;

font: "9xl5bold";

label: "Push";

Methods:
notify:

counter := counter + 1;
I

Example 3-3 Dialogue Variables

Note in the example that Slang supports dynamic typing. That is, the variable counter is
treated as an integer in the initial assignment and in the method, but is converted to a string
for the assignment to label. Serpent automatically decides upon the appropriate type for
an operation or an assignment and changes the type of a value as necessary.

Note, also, that the label attribute of the display object is dependent on the counter

variable. Whenever counter is modified (in this case, as the result of a notify event), the
label attribute is automatically updated by Serpent. In this manner, local variables can be
used to express complex relationships between interaction object attributes.

The dependency concept is fundamental to the structure of Slang programs. Flow of
information between portions of a Slang program is handled automatically based on the
names used in variables and attributes. Thus, in Example 3-3, no explicit action is required
by the user to communicate to Serpent the information that the label attribute of the
display object depends on counter and that label should be recomputed whenever
counter changes.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 15

Slang Overview

3.3 Data Dependencies

An important and powerful aspect of Slang is that it automatically supports dependencies
between data items in the program. Certain data items, such as variables and interaction
object attributes, may be dependent on other variable data within the dialogue. Whenever
th, '.a,, upon which these d-tq it ms are dependent is modified. the data items are

automatically updated.

All variable declarations and object attribute definitions are automatically a portion of the

dependency system. Whenever a data item on the right-hand side of a variable declaration
or an attribute definition is modified, the declaration or definition is recalculated.

Consequently, new values are assigned to items on the right-hand side of the computation.
Computations performed either within methods or within creation and deletion actions are
not recalculated when an independent value is modified.

The automatic recalculation has the potential to introduce an infinite loop into a program.

That is, if variable a is defined in terms of variable b and variable b is defined in terms of
variable a, then an infinite loop within a program is created and the program will not

execute as expected.

Data dependencies are determined for the total calculation of a variable or an attribute. That
is, if the computation of an attribute is a complex statement, then the total computation is
redone as a result of the triggering of a data dependency.

3.4 View Controllers

Interaction objects, their methods and attributes, and dialogue variables provide a great deal
of power in defining relatively static interfaces, or interfaces that contain a fixed set of
interaction objects for which only the attributes may change. Although this is a very
powerful mechanism, it is not adequate to describe more complex interfaces where it is
necessary to present and remove interaction objects as a collection from the display.

The mechanism by which objects are collected is a view controller. A view controller is

used to group interaction objects and to control the circumstances under which they are
presented to the end user. Interaction objects and local dialogue variables are defined
within the context of view controllers. A view controller maps specific data in the

application into objects on the display and controls the existence of these objects.

A dialogue is specified in terms of view controller templates. A template maintains a watch
on application shared data or local dialogue data for specific conditions. When datz that
satisfies a view controller template is placed into application shared data or when local
dialogue data attains certain values, a view controller is created.

16 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

In a Slang program, a view controller template is specified that has a collection of objects
associated with it. When a view controller is instantiated from the template, the associated
objects are created and communicated to the presentation layer. The presentation layer
makes the objects visible to the end user.

A simple example of this is a drop-down menu. A drop-down menu consists of a menu bar
that contains a number of options. Selecting an option causcs a submznu to appzar directly
below the menu bar. Figure 3-3 illustrates a sample drop-down menu.

Meru-1 Menu_2 1OUIT

Item 1

Item 2 ->

Close

Figure 3-3 Drop-Down Menu

The drop-down menu can be implemented by using command widget interaction objects.
Each menu item on the menu bar is represented by a command widget object. When a menu
item is selected, additional command widget objects are displayed in order to produce the

submenu.

View controllers have creation conditions that define the condition under which the view
controller is instantiated. When a view controller is instantiated, the interaction objects
defined for that view controller are displayed to the end user.

The Slang dialogue segment shown in Example 3-4 defines several interaction objects that

make up the menu bar Plung with two dialogue variables.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 17

Slang Overview

The four objects that make up the menu bar are the: menubarform, Menu_1, Menu_2,

and Quit menu items. The menubar form is a form widget that specifies the relative

positions of objects within the form. The Menu_1, Menu_2, and Quit are command
widgets that provide selectable menu headings for the menu bar. Besides these interaction

objects, there are also three local variables defined: displaymenulsubmenu,

display_menu2_submenu and display_subitem _submenu. These variables are

initialized to FALSE and set to TRUE when their respective command b, ttons are selected.

#include "sat.ill"

/*

** This demonstrates the use of Slang to produce

** a menu bar with two tear off menus.

** Initially, there is a menu bar presented to

** the user with two options: Menu 1 and Menu 2.

** Only Menu 1 is active. When the user selects

** Menu_1, a pull down menu will be displayed
** with additional items. When the user selects

** "Item 2 ->" another menu will be displayed.

** Each pull down has its own "Close" button and

** only affects that pull down menu. When the

** user selects the "Close" from the first pull

** down menu, the other pull down menu will

** remain on the display.

Variables:

displaymenul submenu : FALSE;

displaymenu2_submenu : FALSE;

display_subitemsubmenu : FALSE;

Objects:

menu bar form: XawBboard

Attributes:

height:250;

width: 250;

menubar: XawBboard {
Attributes:

parent: menubarform;
height:200;

width: 200;

vertDistance:20;

horizDistance:20; 0

18 Sepent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

borderWidth: 3;

menul item: XawCommand

Attributes:

parent: menubar;

vertDistance: 10;

horizDistance: 10;

height: 20;

width: 50;

label: "Menu 1";

Methods:

notify:

display-menulsubmenu := TRUE;

menu2 item: XawConmmand

Attributes:

parent: menubar;

vertDistance: 10;

horizDistance: 60;

height: 20;
width: 50;

label: "Menu_2";

Methods:
notify:

display_menu2_submenu := TRUE;

quitmenuitem: XawCommand

Attributes:
parent: menu-bar;

height: 20;

width: 50;

vertDistance: 10;

horizDistance: 110;

label: "QUIT";

Methods:
notify:

exit ();

Serpem. Slang Reference Manual (CMUISEI-91-UG-5) 19

Slang Overview

*menul view controller

VC: menul-submenu0

Creation Condition: (display menul submenu)

Objects:

menul-form: XawBboardf

Attributes:

parent: menu bar;

vertDistance: 30;

horizDistance :10;

borderWidth: 1;0

height: 65;

width: 76;

iteml menu item: XawConmmand{

Attributes:

parent: menul form;

vertDistance: 0;

horizDistance: 2;

height: 20;

width: 70;

borderWidth: 1;

label: "Item 1";

item,2_menu-item: XawCommand{

Attributes:

parent: menul form;

vertDistance: 21;

horizDistance: 2;

height: 20;

width: 70;0

borderWidth: 1;

label: "Item 2 ->"f;

Methods:

notify:

display_sub_item-submenu :=TRUE;

remove menu item: XawCommand

Attributes:

parent: menul-form;

20 Serpent: Slang Reference Manual (CMfU/SEI-91 -UG-5)

Slang Overview

vertDistance: 42;

horizDistance: 2;

borderWidth: 1;

height: 20;

width: 70;

label: "Close";

Methods:

notify:

display_menul_submenu := FALSE;

ENDVC menul submenu

/*

** sub item-submenu view controller
*/

VC: sub item submenu

Creation Condition: (display_subitem submenu)

Objects:

sub item form: XawBboard

Attributes:

parent: menu-bar;
vertDistance: 53;

horizDistance: 88;

borderWidth: 1;
height: 65;

width: 76;

itema menu item: XawCommand

Attributes:

parent: subitemform;

vertDistance: 0;

horizDistance: 2;

height: 20;

width: 70;

borderWidth: 1;

label: "Item A";}

itemb menu-item: XawCommand
Attributes:

Serp en: Slang Reference Mansdal (CMU/SEI-91-UG-5) 21

Slang Overview

parent: sub item form;

vertDistance: 21;

horizDistance: 2;

height: 20;

width: 70;

borderWidth: 1;

label: 'Item B";

remove menu item: XawCommand

Attributes:

parent: subitemform;

vertDistance: 42;

horizDistance: 2;

borderWidth: 1;

height: 20;
width: 70;

label: 'Close";
Methods:

notify:

displaysubitem submenu := FALSE;

ENDVC sub item submenu

Example 3-4 Menu Bar

When a menu item is selected, the variable that caused the view controller to be instantiated
is set to FALSE. Since the creation condition for the view controller is no longer TRUE, the
view controller is destroyed and the interaction objects are removed from the display.

Normally, the not ify method for the menu items would perform some command-specific

action, such as notifying the application of the selected command.

3.5 Shared Data

Often the dialogue specifier may need to display interaction objects to the end user based

on the existence of a particular data item. An example is an application that provides a
function to query an employee database. The end user may make multiple requests to view

the data for several different employees at the same time.

22 Serpem: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

To specify a user interface for this example, it is convenient to define a view controller that
controls the presentation of an employee record. The creation condition for the view

controller can then be based on the existence of a new employee shared data instance in the
shared database. This is accomplished using the new function in the creation condition of
the view controller.

Figure 3-4 illustrates the shared data definition for an employee record and three instances
of the shared data element. These are added to the shared database directly from the

dialogue or by the application as described in Serpent: System Guide.

Shared Data Record Instantiation Shared Data Instances

John Smith
_ _101 Main Street

employee: record (212) 555-1234
name: string[50];

address: strng[50];
phone: string[1 3]; Sue Scottend record: 22 Park Avenue

Undefined

Harry Altair
,- 64 Fifth Avenue

(212) 712-6873

Figure 3-4 Shared Data Definition

The creation condition defined in the view controller template shown in Example 3-5 is

based on the existence of a new employee shared data instance in the shared database. The
creation condition uses the new function that serves only as a test for existence, not the
action to create anything. A separate instance of the view controller is created for each of
the three employee shared data instances and added to the shared database; a separate set

of interaction objects is created for each view controller.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 23

Slang Overview

VC: employee_info

Creation Condition: (new("employee"))

Objects:

name-field: XawText I

Attributes:

height: 20;

width: 200;

label: employee.name;

END VC employee_info;

Example 3-5 View Controller Template

Each of these three view controller instances is bound to the shared data instance that
caused it to be created. The dialogue specifier may then directly reference the specific
values of each of the employee shared data instances within the scope of the view
controller. For example, the label attribute of the name field interaction object
illustrated in Example 3-5 is set directly to the name component of the employee shared
data instance.

This example illustrates how Slang provides a mapping between application shared data
and interaction objects. Remember, there are actually three different employee records in
the shared database and three different sets of interaction objects on thc display. Serpent
provides a mapping between shared data instances and their corresponding interaction
objects and maintains the relationship between them.

3.6 Dialogute Shared Data

Dialogue shared data is a mechanism tht allows a dialogue to create, modify, and destroy
instances of data without informing an application or a toolkit of the actions.

Slang provides predefined routines that allow for the creation and destruction of shared data
elements from within the dialogue. To create dialogue shared data, the type and structure
of the shared data must first be defined in a shared data definition file. The shared data
definition file must be named dmn. sdd. Refer to Serpent: Saddle User's Guide for further 0
information on creating a shared data definition.

24 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

Dialogue shared data is used in exactly the same fashion as , pplication shared data. It is

treated as shared data conceptually and with the same mechanisms, but the data actually is

local and not shared with anything. It is possible, for example, to instantiate view

controllers from new instances of dialogue shared data and to access this shared data in the

sam, manner as application shared data.

The exact syntax and semantics of the shared data routines are defined in Appendix E.

3.7 Actions ON CREATE and ON DESTROY

To specify actions to be perform-d whenever a view controller is created or destroyed, use

ON CREATE and ON DESTROY respectively. These mechanisms provide a means for
2xecuting procedural code snippets at defined instances within the Gialogue model. Actions

specified conditionally with ON CREATE and ON DESTROY may be used, for example, to
increment and decrement counters.

Actions ON CREATE and ON DESTROY also may be used for calculating aggregate
functions such as the average salary of all the employees in the employee database. The

Slang dialogue illustrated in Example 3-6 performs this function.

In Example 3-6, the variable average_salary is defined to be totalsalary divided
by employeecount. Tiuas, average_salary depends upon both totalsalary and

employee_count. When either changes, average_salary is automatically changed.

Thus, the view controller employee_vc has no associated objects. Its only function is to

increase or decrease employee_count and totalsalary. The actual presentation to
the user is through the object salary_field.

Variables:

employee_count: 0;

totalsalary: 0;
averagesalary: totalsalary / employee_count;
/*

** if employeecount is 0, then average_salary

** becomes undefined
*/

Object.-:
salaryfield: XawText

Attributes:

horizDistance: 100;

vertDistance : 100;

height: 20;
width: 200;

label: average_salary;

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 25

Slang Overview

VC: employee_vc

Creation Condition: (new ("employee"))

On Create: f

employeecount := employeecount + 1;

total-salary := total_salary + employee.salary;

On Destroy:

employeecount := employeecount - 1;

totalsalary := total_salary - employee.salary;

END VC employee_vc;

Example 3-6 Calculating Aggregate Functions

3.8 Dialogue Structure

A Slang dialogue contains the specification of a user interface for a single application. The

dialogue contains information about the application shared data (and by implication, the
application) and the toolkits that are associated with the dialogue. The structure of the
dialogue is:

" a list of application and toolkit shared data

" a list of view controllers used in the dialogue

The dialogue itself is always the outermost view controller and, consequently, all of the
components of a view controller can be used in the dialogue as well as in explicitly declared
view controllers.

The components of a view controller are:

• variables

* objects

• actions ON CREATE

* actions ON DELETE

* nested view controllers

26 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

Variable declarations serve two purposes: naming the variables for future reference and

giving a definition of the variable which will be ree,.aluated whenever the independent
variables in the definition are modified. The declaration of average_salary in Example

3-6 shows the use of variable declarations as a constraint definition. Whenever

total-salary or employeecount are modified, average_salary is automatically
reevaluated.

Objects declarations define the interaction objects that will be instantiated whenever a view

controller instance is created. Each object that is declared has a collection of attributes that

defines its presentation and a collection of methods that defines the response of the dialogue

to end-user actions. Attributes are dependent on the variables that are used to define them

(and consequently are reevaluated whenever the independent variables change), but

methods are not a portion of the dependency analysis.

Actions ON CREATE and ON DELETE are code snippets that are executed once

whenever a view controller is created (deleted). They are not subject to dependency

analysis and are only evaluated when the relevant events occur.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 27

Slang Overview

S

0

S

0

S

S

S

S

S

28 S~rpen:: Slang Reference Manual (CMU/SEI-91-UG.S)

S

Lexical Elements

4 Lexical Elements
This chapter describes the lexical components of Slang, including the characters that may

appear in a Slang dialogue and the lexical units or tokens that they may form.

4.1 Character Set

Characters used in a Slang dialogue may consist of any characters from the standard ASCII

character set. Slang is not case sensitive, except for characters written within string

constants, preprocessor commands, and comments.

There are also special characters that are used in Slang either to separate adjacent tokens

for the preprocessor or to format Slang dialogue text in a string. These characters include a

blank space, end of line, formfeed, and horizontal tab.

Line termination is also a special character, but is generally ignored in Slang. It is

important, however, in the recognition of preprocessor control lines, where the first

character of the line must be a "#" character. The character following a line break character

is considered the first character of the next line.

4.2 Comments

Comments begin with the characters /* and end with the first subsequent occurrence of the

characters */. Comments, which are removed from the Slang program by the Slang

preprocessor before a Slang dialogue is compiled, cannot be nested. For example, the

following line:

/* /* Slang Source Commentary */

would be treated as a single comment and would generate a compiler error.

Another way to comment out dialogue lines is to use the preprocessor's conditional

commands. For example the following lines:

#if 0

#endif

would effectively comment out any section of the dialogue, including nested comments.

For more information about the preprocessor refer to Chapter 12.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 29

Lexical Elements

4.3 Tokens

The characters making up a Slang program are collected into lexical units called tokens.
Tokens are the smallest lexical units that are recognized by the Slang compiler. When
collecting characters into tokens, me Slang compiler always forms the longest token

possible. For example, vc_fred is interpreted as a single identifier instead of the reserved
word vc followed by the identifier _fred.

Adjacent tokens must be separated by white space or comments. In a macro body,

separating tokens with comments rather than white space will cause the tokens to be
merged. For example,

#define concat (x,y)
Xl**/y

concat (A, B) => AB

Slang tokens are case insensitive, except for string constants. This means, for example, that
the identifiers Fred, fred, and FRED are the same.

There are five classes of tokens in Slang: operators, special characters, identifiers, reserved
words, and constants. Each of these classes is discussed in the following sections.

NOTE: Tokens that appear together in Slang, such as Creation and Condition, are

accepted with or without a separator character. For example, Creationcondit ion and

Creation Condition are both legal.

4.3.1 Operators and Special Characters

Slang has operators and special characters. Each operator has an associated precedence
level that controls the order of operations in an expression. If parentheses are not used to
indicate the grouping of operands with operators, the operand is grouped with the operator
that has the higher precedence. For example, a + b * c would be grouped as a + (b * c).

Relative Precedence Operator Description

9 names, literals simple tokens

8 funcO function call
8 component selection 0
7 not logical negation

7 arithmetic negation
6 ** exponentiation

5 *, I multiplicative

30 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Lexical Elements

4 +, - additive

3 <,>, <=, >= relational

2 =,<> equality/inequality

1 and, or logical

0 := assignment

Slang supports the following special characters;

* #delineates preprocessor instructions

• \identifies an escape character inside of text used for output

** { } delineates blocks of code

separates parameters in a function call

* ;terminates a statement

* •declares an attribute or variable

4.3.2 Identifiers

An identifier is a sequence of letters, digits, and underscore characters. An identifier cannot

begin with a digit or an underscore and cannot have the same spelling as a reserved word.

Identifiers may be of any length.

4.3.3 Reserved Words

The following are reserved words in Slang and may not be used as identifiers:

" AdiMethods

* AndNot

• AttributesNull

• Boolean Objects

* BufferOn Create

* CreateOn Destroy

" Creation ConditionOr

• DoReal

• ElseSelf

" ElsifString

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 31

Lexical Elements

" End IfThen

" End VcTrue

" End WhileUndefined

" ExitVariables

• FalseVc

" IdVoid

" IfWhile

" Integer

Table 4-1 Reserved Words

4.3.4 Constants

Constants are lexical elements that are characterized by having both a value and a type.
There are four types of user-definable constants in Slang: boolean, integer, real, and string.
There is also a system-defined type of constant which is an id.

There are also five predefined constants: Undefined, Null, True, False, and Self.

4.3.4.1 Integer Constant

An integer constant consists of a sequence of digits, 0-9. An integer constant may

optionally include a leading + or-. Integer constants may not include commas or other non-
digit characters. Examples of integer constants are: 1989, 0, and 1.

4.3.4.2 Real Constant

A real constant consists of a sequence of digits containing a single decimal point character.
A real constant may optionally include a leading + or -. Examples of real constants are: .5,
1989., and 3.14.

4.3.4.3 String Constant

String constants consist of any arbitrary text delimited by double quotes. Examples of string
constants are: "Fred," "1989," "string examples," and "$%A&".

String constants may also contain character or numeric escape codes. Escape characters are

used to either represent characters that would be awkward to enter directly or to represent
some particular formatting.

32 Serpent: Slrng Reference Manual (CMU/SEI-91-UG-5)

Lexical Elements

Escape characters consist of the backslash character followed by a character escape codes.
Table 4-2 lists the character escape codes used in Slang.

\b backslash
\f form feed
Nn new line
\x carriage return
\i horizontal tab

\\ backslash

Table 4-2 Character Escape Codes

Numeric escape codes allow any character to be expressed by writing its octal code in the

target character set. For instance, using the ASCII character set, the character a may be

written as \141 and the NULL character as \0. Numeric escape codes terminate when either

three characters have been read or a non-octal character is encountered. For example, the

string \1 11 consists of two characters: the character corresponding to octal code 011 and

the character 1. The string \080 consists of three characters: the character corresponding to

octal code 0 and the literal characters 8 and 0.

Predefined Constants

The UNDEFINED constant is used to represent a distinguished value which is recognized as

undefined.

The NULL constant is an ID constant. It is used to specify that a given ID, while not

undefined, does not identify any specific data item. The Null constant may be used, for

example, to identify the end of a list.

The Self constant is an ID constant that is used to specify the ID of the current view

controller or object, whichever is the local context.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 33

Lexical Elements

S

S

S

S

S

0

S

S

S

34 Serpent: Slang Reference Manual (CM1J/SEI-91-UG-5)

S

Data

5 Data
A Slang dialogue can be thought of as a mapping between, application data and interaction
objects. As such, the ability to declare and manipulate data in Slang is crucial to developing

a dialogue. This chapter describes the different kinds of data that can exist in a Slang

dialogue and how to declare and reference those data.

5.1 Different Forms of Data

Slang recognizes three forms of data:

1. Entities. These are data items such as shared data, vc, Object, Variable,
Attributes, and Methods, which have a predefmed meaning within a Slang

dialogue. Some entities have names (shared data, Vr, object, and Variable)

and some have components that have names (shared data components,
Attributes, and Methods).

2. Object type. This is the declaration type of an object entity. Each object is

declared to be of a type. Admissible types are defined by the particular toolkits
that have been included into a Slang dialogue. For example, an object can be
declared to be a XawCommand widget. XawCommand is a type which is defined

within the Athena Widget binding to Serpent.

3. Data type. This is the type of the value of shared data components, attributes,
and variables. Components of application shared data, components of dialogue

shared data, attributes, and constants all have fixed type. The type of a shared
data component is specified in the shared data definition, the type of an
attribute component is specified by the toolkit integrator, and the type of a

constant is determined at compile time. Each variable has a dynamic data type
that is determined at runtime for each assignment of value to the variable. The

data value of a data type is its current value.

5.2 Assignment of Values to Data Types

When a data value is assigned to something with a fixed data type, its value is converted (if
possible) to the fixed type. Appendix C presents the allowable conversions. When a data
value is assigned to a variable (with dynamic type), the new type of the variable becomes

the type of the data value.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 35

Data

For example, if year has a fixed data type of integer, the following assignments will

yield equivalent values for year.

year := "1984"; year := 1984; •

Example 5-1 Automatic Conversion

Alternatively, if year has dynamic type, the first assignment will result in a value typed as
string and the second will result in a value typed as integer.

5.3 Object Types

An object is the only data item that has an object type. Variables, attributes, and shared data
items have data types. Data types are discussed in more detail in the following paragraphs.

5.4 Data Types

Data items in Slang have either fixed or dynamic data type. For fixed data type, the type of
the data item is determined at compile time. For dynamic data types, the type is determined
dynamically at runtime. Examples of data items with fixed type are dialogue, application
shared data, and object attributes. The only data items with dynamic type are dialogue
variables.

Although fixed data types cannot change type, it is possible to assign data of a different type
to a fixed data type if there is an appropriate conversion. This automatic conversion is
illustrated in Example 5-2 The value 1984 is automatically converted to an integer so that
it can be stored as the fixed typed integer 1984.

year integer; (described in Saddle file)

year '1984";

Example 5-2 Fixed Data Type

Alternately, dynamic type data items can change type dynamically at runtime. In Example
5-3, the variable year is set to the integer value 1. This means that the type of the variable
is set to integer and the value assigned is 1. In the following line, when the value 19 8 4 is
assigned to the variable, the type of the variable is set to string and the value is assigned
1984.

year 1;

year "1984";

Example 5-3 Dynamic Data Type 0

36 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

5.5 Base Types

There are six base data types supported in Serpent. These types are defined in Table 5-1.
For more detailed information refer to Serpent: Saddle User's Guide.

Type Description

boolean true, false

integer 32 bits, from -231 to 231 -1
real 64 bits, approximately 15 significant figures

string variable length to maximum specified in Saddle
description

id data item identifier

buffer n bytes of data together with length and type identifier

Table 5-1 Base Types

5.6 Dependency

An extremely important concept in Slang, dependency is one of the main ways in which the

state of a Slang dialogue is modified at runtime.

A data item in Slang is dependent on another data item when the expression or code snippet

(see Chapter 7) corresponding to the former data item references the latter. For example, if
the variable x were assigned the value 2 * y in the declaration statement, x would be
automatically reevaluated whenever y changed. Expressions that are used in the evaluation

of attributes of objects or in the declarations of variables are reevaluated whenever the
independent variables in those expressions are modified. The independent variables can be

either variables, attributes, or shared data components.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 37

Data

Data dependencies are determined dynamically at runtime. In Example 5-4, if the value of
w is true, x is dependent on y and the expression will only be reevaluated if y changes or if
w changes. If the value of w becomes false, then the expression would be dependent on z
and will only be reevaluated if z or w changes. Determining dependencies dynamically
helps to optimize runtime performance by reducing the situations in which the reevaluation
of variables and attributes is necessary.

x: { 0
If (w) Then

x := Y;

Else

X :- Z;

End If;}

Example 5-4 Dependency Propagation

It is possible when doing runtime dependency propagation to have infinite loops in
dependent calculation. Potentially infinite loops within a Slang program are dealt with in
one of two ways, depending upon how m~wy snippets are used in the loop. The granularity
of dependency calculations is at the snippet or expression level. That is, a snippet is
determined to be dependent upon particudar data items during execution. An infinite loop is
suspected to exist (and execution is terminated) when a particular snippet is evaluated a
number (currently 10) of times for the same data items. In Example 5-5, where variable
var1 is dependent upon variable var2 and vice versa, the definitions are two independent
snippets.

varl: var2;

var2: varl;

Example 5-5 Multiple Snippet Infinite Loop

There are cases in which it is possible to have a snippet dependent upon a variable that is
also defined within the snippet. In these cases, the runtime system does not propagate

dependencies. In Example 5-4, the snippet used in the definition of x depends upon the
value of x (from the boolean expression "x = y"). The snippet also modifies the value of
x. Thus, if snippets were always reevaluated when the independent value is modified, the
definition of x would cause an infinite loop. Because, however, dependency granularity is
at the snippet level, this snippet is treated as a dependency on x, but not as a modification
of x. If x is modified from outside this snippet, the declaration is reevaluated but it is not
reevaluated as a result of the modification of x from within the snippet.

3

38 Serpent. Slang Reference Manual (CMU/SEI-91-UG-5)

Data

X: f

If (x = y) Then

x y + 1;

Else

x := y;

End If;,

Example 5-6 Snippet Dependent On Defined Variable

Example 5-7 shows another potential infinite loop. In this case, the variable temp is
referenced within tl,- snippet (from the second statement). Thus, if the granularity were at

the statement rather than the snippet level, an infinite loop would result the second time the

snippet is executed (the snippet depends upon the variable temp and temp is modified by

the first statement in the snippet). Because the granularity is at the snippet level, this case

is treated as a modification of temF but not as a use of temp. That is, if temp is modified,

the snippet is aot reevaluated and no infinite loop results.

x: {

temp := 3 * varl + var2;

x := temp * temp;

Example 5-7 Snippet Dependent On Variable Both Modified and Used

5.7 Scope and Visibility

The scope of a data item -n Slang is the set of statements and expressions in which the use

of the identifier is associated with that particular data item. Slang supports block structured
scoping in a fashion similar to that of programming languages such as Pascal.

Scopes are defined by view controllers and interaction objects. This could be alternately
stated by saying that view controllers and interactioL objects provide context for data items.
Within the context in which they are defined, data items are said to have local scope. With
respect to the other children of the parent, data items are said to have global scope. All data

items declared in the same context must have unique names.

Data items are said to be visible if the identifier for that data item can be associated with the
value. Data items aie typically visible within their scope unless they are hidden. Hiding

occurs when a data item having local scope l'as the same name as a data item with global
scope.

Serpent: Slang Refe. vnce Manual (CMU/SEI-91-UG-5) 39

Data

The dialogue itself can be thought of as a view controller with a creation condition of true.

Data items declared at the topmost level of the dialogue are then local to the dialogue and
global to all other view controllers defined within the dialogue.

The following example illustrates the concepts of scope and visibility within Slang in terms
of an abstract block structured language. The blocks can be thought of as being either view

controllers or interaction objects in Slang.

VC: A
Variables:
x ;

Y;

VC: B
Variables:

x;
z ;

On Create:
x := 1; /* assigns B.x */
y := 2; /* assigns A.y */
z := 3; /* assigns B.z */

END VC B;

VC: C
On Create:

z := 1; /* illegal */

ENDVC C;

ENDVC A;

Example 5-8 Scope and Visibility in an Abstract Block Structured Language

In this example, view controllers B and C are defined inside the context of view controller

A. Since both x and y are declared within view controller A, they are considered to be local

to A and global to both B and c. Data items declared within view controller B or C cannot

be referenced from view controller A since they are outside the scope of A.

There are three assignment statements within view controller B. The first assignment

assigns the value of 1 to data item x declared in view controller B. This is because the name

of the data item (y in this case) is hiding the identically named data item declared in view

controller A. The second assignment assigns the value of 2 to the data item y declared in
view controller A. The assignment of the value of 3 to data item z is a simple assignment

to the data item declared locally in view controller B.

40 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

The assignment in view controller c of the value of 1 to data item z would be an error

condition since data item z is outside the context of view controller C and will result in a
compiler error message.

Data items can be referenced outside their scope if they exist and the exact path is known.

A path is a description of the location of a data item in the dialogue structure. Referencing

data using a path is described in Section 5.9.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 41

Data

5.8 Extent

The extent of a data item refers to the period of time for which storage is allocated for the
data item. Data items in Slang may have either local or dynamic extent.

A data item with local extent is created at the same time as either a view controller or an
interaction object. Examples of data items with local extent are variables and object
attributes.

Data items with dynamic extent may be created or destroyed at any time by either the
dialogue or application program. Only shared data has dynamic extent.

5.9 Data Access

Each instance of a named entity in a Slang program (view controller, variable, object, and
shared data element) is assigned a Serpent identifier when the instance is created. This
identifier is of type ID. The identifier, for the most part, is unnecessary for the Slang
programmer since the data items are within the scope of their use and can be referenced
directly by name. It is possible, however, to reference data items by using their identifier.
This is a useful feature when it is necessary to access a value that is out of the current
context. Values of variabies, attributes of objects, and shared data components can be set or
retrieved through the use of the data access routines described in Appendix E.

Several different methods exist to determine the identifier for a data object:

At creation time: The creation of a shared data element through use of the
create sd instance returns an identifier for the shared data element that has been

created.

Special functions:

The function getparentvc returns the identifier of a view controller.

The function getobject returns the identifier of an object within a view controller.

The special SELF constant can be used to refer to the identification of objects, variables,
and view controllers:

" When used within an object attribute or method specification, SELF refers to the
ID for that object.

* When used within a variable specification, SELF refers to the ID for that
variable.

42 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

* When used within the actions on create or destroy code snippets, SELF refers to
the ID of the enclosing view controller.

The use of data access routines to set or retrieve identifiers or values requires explicit
knowledge of the access path to the data item from the current context and, consequently,
should only be used when absolutely necessary. For example, the addition of an
intermediate view controller may change the access path from one compilation to another
and a section of code that worked correctly prior to the addition may no longer work

correctly.

5.10 Declared Data

This section describes data types that are declared within the dialogue.

5.10.1 View Controllers

View controllers serve two functions. At runtime, they provide a visibility mechanism for
a collection of objects. When an instance of a view controller is created, those objects
declared within the view controller are created and are thus made visible to the end user.

At compile time, view controllers provide context for variables, interaction objects, and
bound shared data instances. A shared data instance is bound to a view controller when the
creation condition for the view controller references the shared data element and the
creation condition becomes true.

View controller instances are data items within a dialogue that have unique instance IDs.
View controller IDs can be obtained using either the SELF constant or data access routines
and can then be used to reference data items within the dialogue using the data access
routines.

5.10.1.1 Declaration

A view controller may be referenced directly within its scope using the name of the view

controller.

5.10.1.2 Extent

Variables have local extent. This means they exist only for the period of time in which the
view controller instance that contains them exists.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 43

Data 0

5.10.1.3 Scope

Variables have local scope within the view controller in which they are declared and global

scope within the subview controllers of that view controller. Being in scope within a view

controller (whether local or global) means that the variable can be referenced within
objects, subview controllers or variables declared within the view controller. Thus, in

Example 5-8, variable y can be referenced from anywhere within View Controller A.

The order of declaration of variables is unimportant. Assume x is declared to be y + 1 and

y is declared to be 10. If the declaration of x precedes the declaration of y, x is initially
evaluated to be undefined and then y is evaluated to be 10. The evaluation of y changes an

independent variable in the declaration of x and, consequently, x is reevaluated to be given

the value 11.

5.10.2 Objects

Object declarations within Slang are templates that are instantiated when a particular view
controller is instantiated.Object instances are data elements and have unique instance
identifiers. Object identifiers can be determined using the SELF constant or data access
routines. Objects provide context for attributes.

An object may be referenced directly within its extent, using its name.

Objects have the extent of the containing view co ller. When the view controller is
instantiated, an instance of the object is created ant. vhen the view controller is destroyed,

the instance is destroyed.

5.10,3 Attributes

Attributes are used to define the presentation characteristics of interaction objects.
Attributes are similar to shared data components in that they have fixed type. The type of

the attributes is defined by the toolkit integrator.

An object attribute is declared to be either an expression or a code snippet in which the
attribute is assigned (similarly to variables). The declaration generates a set of
dependencies that are associated with the attribute. Every time any of the data items
referenced in the declaration is modified, the attribute is reevaluated.

5.10.3.1 Type

An object attribute has a fixed type, either boolean, integer, real, string, buffer, or ID. Since

44 Serpent Slang Reference Manual (CMU/SEI-91-UG-5)

Data

attributes are used to communicate with input/output toolkits, the values of attributes also
have semantic meaning that is defined by the toolkit.

5.10.3.2 Extent

Attributes are created and destroyed with the object in which they are declared.

5.10.3.3 Scope

The scope of an attribute is limited to the object in which it is defined. Attributes may also

be accessed from outside their scope if the exact path is known.

5.10.4 Methods

Methods provide a way of handling end-user interactions by specifying actions to be

performed f3r specific end-user generated events. Each object type has a fixed collection of
valid methods declared by the toolkit integrator. Methods are executed once for each end-
user generated event.

5.10.5 Shared Data

Shared data is information that is communicated between the application and dialogue,
solely within the dialogue, or between the dialogue and a toolkit. It consists of instances of
shared data templates. Shared data is segmented: each application process communicating
with Serpent has a segment, the dialogue has a segment, and each toolkit being used has a

segment. The application segments are called application shared data, the dialogue
segment is called dialogue shared data, and the toolkit segments are called toolkit shared
data. The Slang programmer does not access toolkit shared Ata directly. Instead, the Slang
programmer manipulates objects, object attributes, and methods; Serpent handles these
objects internally through shared data.

Shared data resides in the shared database, is defined externally in a shared data definition

file, and is instantiated at runtime by either the application or dialogue. Application and
dialogue shared data instances can be bound to a view controller. A shared data instance is

bound to a view controller when two conditions exist:

1. The creation condition for the view controller references the shared data
element.

2. The creation condition is true.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 45

Data 0

5.10.5.1 Type

Shared data is different from dialogue internal data items in that it is declared externally to
the dialogue. The type and structure of shared data is defined in a shared data definition file. 0
A separate shared data definition file must be created for each Serpent application as well

as for dialogue shared data.

A shared data definition file consists of aggregate data strtures. The aggregate structures
are referred to as shared data elements. Elements have components, each of which is
declared to be one of the primitive types of Slang.

See Serpent: Saddle User's Guide for a complete description of shared data definitions.

5.10.5.2 Extent

Shared data has dynamic extent. It is created by either the application or dialogue and exists

until it is explicitly destroyed.

5.10.5.3 Scope

The scope of a shared data instance includes any bound view controllers and any interaction

objects and/or subview controllers defined within the scope of that view controller. Shared

data items may be referenced directly within its scope using the name of the element or
component. S

Shared data can also be referenced from anywhere in the dialogue, if the ID is known, using

the shared data routines defined in Appendix E.

5.10.6 Dialogue Shared Data

It is often useful in dialogue specification to be able to instantiate multiple instances of local

data. For example, it is possible to create a dialogue without an application for prototyping
purposes and, subsequently, to add the application. In such a situation, application shared S
data cannot exist because there is no application.

Dialogue shared data is like application shared data in that it is defined externally in a
shared data definition file, can have view controllers bound to it, and must be explicitly
instantiated and destroyed. It differs from application shared data only in that it is kept

locally in the dialogue and not communicated to any external process.

46 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

The shared data definition file used to declare dialogue shared data must be named
dialoguename. sdd, where dialoguename is the name of the file containing the
dialogue, and the file name must be included in the prologue section of the Slang dialogue
(see Section 9.5.1 for a discussion of prologues).

Dialogue shared data can be instantiated at runtime using the create sd instance

function described in Appendix E. The create sd instance function returns a unique
Serpent identifier that is used to reference, and later destroy, the shared data instance. In
Example 5-9, the shared data element dial elemsd is instantiated and the identifier
stored in dial elem id.

dial elem id := create sd instance("elemname", "DMBOX");

Example 5-9 Dialogue Shared Data Creation

The dialogue shared data element may be destroyed using the destroy sd instance

function show in Example 5-7.

destroysd instance (dialelemid);

Example 5-10 Dialogue Shared Data Destruction

5.10.7 Application Shared Data

Application shared data is used to communicate between the dialogue and an application.
Shared data instances can be created by the application and communicated to the dialogue
or cre2:t& :- with the. orc_: - :- instance functior (described in
Appendix E) and then communicated to the application.

Application shared data is specified using Saddle and is specific to an application. These
concepts are discussed in detail in Serpent: C Application Developer's Guide, Serpent: Ada
Application Developer's Guide, and Serpent: Saddle User's Guide.

5.11 Data Reference

In order to understand how data is referenced in a Slang dialogue, it is important to
understand the dialogue structure.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 47

Data

5.11.1 Dialogue Structure

Dialogues have both a static specification-time structure and a dynamic, runtime structure.
At specification time, the dialogue structure is a hierarchical tree of view controller and
object templates. This static structure can be thought of as being the dialogue tree skeleton.
At runtime, some of the templates have been instantiated (possibly multiple times). The
runtime dialogue structure then consists of this tree skeleton plus whichever nodes on the
tree skeleton have been instantiated. Since view controllers can instantiate multiple times,
there may be multiple instances of the various nodes associated with a particular node on
the skeleton. Each node in the dynamic structure has a unique path from the base of the
structure.

Data reference can be performed in Slang using both direct and indirect referencing. The 0
following subsections describe how each of these data referencing mechanisms are used.

5.11.2 Direct Reference

Data items in the dynamic structure can be referenced directly by path name from within
their scope. The scope rules can be thought of as allowing upward referencing within the
instance tree (as long as a name is not overloaded).

A path name consists of a series of tokens separated by the "." symbol. The first symbol is S
considered the anchor, and determines the location from which the remainder of the path is
determined. The anchor is bound to the first data item encountered in the dialogue structure,
starting with the current context and working towards the dialogue base. Each of the
following tokens must be defined in the context of the preceding token or a syntax error will
occur. The rightmost token is the name of the actual data item being referenced. 0

The following are examples of referencing data using pathnames:

a vc.a subvc.a variable
visible vc.presentation object .attribute 0
employee, name

Example 5-I1 Direct Reference

4
S

48 Serpent. Slang Reference Manual (CMU/SEI-91-UG-S)

SI

Data

5.11.3 Indirect Reference

Occasionally, it is necessary to reference other than upward in the instance tree. In this case,

the Serpent identifier of the particular data item to be referenced must be determined. Once

the identifier has been determined, the value of the data item can be set or retrieved using

the data access and shared data routines defined in Appendix E.

In order to use indirect referencing, the identifier of the data item must be determined. A

technique to use is to have the data item retrieve its identifier and save it in a variable within

scope of the location where it is to be referenced. Example 5-14 shows a use of this

tt hnique.

5.11.4 Examples of Data Reference

To better illustrate data reference in Slang, some further examples from the employee

database application are presented in this section. These examples assume two different

shared data elements: one contains basic employee information and the other has

information from the employees' previous reviews. These shared data records, specified in

Saddle, are illustrated in Example 5-12.

employee: record

name: string[50 ;

address: string [50];

phone: string[i0];

salary: integer;

end record;
review: record

name: string[50];

ptr: idtype; /*id of employee data element*/

year: integer;

last-raise: string[50];

level: string [20);

end record;

Example 5-12 Employee Shared Data Definitions

The requirement is to provide a dialogue that will examine the database of employees and

review information and display an employee bonus. Two dialogues (Example 5-13 and

Example 5-14) show how to accomplish this function.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 49

Data

Example 5-13 is written using nested view controllers. The creation condition of
employee vc is based on the existence of a new employee shared data instance in the
database. The sub-view controller review vc is then created when a review shared data
instance is found for the specified employee with a date field value of 1989. In this example,
it is possible to directly reference shared data information from both the employee and
review shared data instances from within the review vc view controller to determine the
employee bonus. Data references are automatically bound to the correct shared data
instance of both shared data instances. The top level view control is instantiated whenever
a new employee is added to shared data. The nested view controller is instantiated
whenever a new review is added to the shared data that describes the employee referenced

in the top most view controller. Thus, in the second view controller there are two
conditions: one to add a new review to the shared data and the other to insure that the
correct employee is referenced. •

VC: employeevc

Creation Condition: (new ("employee"))
Variables:

/*local variable is initialized*/

name: employee .name;

VC: review vc

Creation Condition:

(new("review"and name = review.name)
Objects:
dueforraise: labelwidget { •
/*

** omit most attributes

label

If (employee.salary < 20000)

And

review.level = "superstar")

Then

label := "Merry Xmas.";

Else

label := "Forget it."; 0
End If;

END VC reviewvc;

END VC employee_vc;

Example 5-13 Direct Data Referencing

50 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

In the second version of this problem, Example 5-14, a single view controller is used for
the solution. The assumption is that the application places the Serpent identifier for the

correct employee shared data instance into the ptr component within the review element.
The creation condition for the single view controller causes a new view controller to be

created whenever a new record element is added with the desired year. The pt r component
within the review element ji used to reference the correct employee. Data access routines

must be used to reference the values.

VC: review vc

Creation Condition:

(new("review") And review.date = 1989)

Objects:

due for raise: XawLabel f

Attributes:

** omit most attributes
*/

label: I

If(employee[review.ptr] .salary < 20000)

And

review.level = "superstar")

Then

label := "Merry Xmas.";
Else

label := "Forget it.#;

End If;

END VC review vc;

Example 5-14 Indirect Data Referencing

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 51

Data

0

0

0

S

S

S

S

0

S

52 Serpent Slang Reference Manual (CMU/SEI-91-UG-5)

S

Expressions

6 Expressions
Slang supports a standard set of unary and binary operators. Expression operands may have
any underlying type (see Chapte. 5). The resulting type and value of the expression is a
function of both the operator and the type and value of each operand. The type results and
conversions tables in Appendix C define the exact conversions that are performed at
runtime. In general, operations on different types first try to coerce the types to integer, real,
and string, in that order, in order to perfcrrn the operation. If no conversion can be
performed then a runtime error occurs.

6.1 Undefined Values

Slang allows values of data items to be undefined. When an undefined value is used in an
expression, the undefined value propagates outward during expression processing. For
most operations, whenever an operand value is undefined, the resulting value is also
undefined. The only exception is the equality operation in which two undefined operands
are treated as being equal.

6.2 Logical AND and OR Operators

The logical AND and OR operators are used to provide logical operations on boolean
values. Logical operators are not defined for anything other than boolean values and
UNDEFINED.

A complete formal syntax for expressions is given in Appendix A. The following is the
formal syntax for logical AND and OR expressions:

expression ::=

[expression logical_operator) boolean_expression

logical_operator

And

I Or
I 'I"

Serpent Slang Reference Manual (CMUJ/SEI-91-UG-5) 53

Expressions

Logical operations can return one of three values: true, false, or undefined. The following

tables contain the values of logical operations.

AND false true undefined
false false false undefined
true false true undefined
undefined undefined undefined undefined

Table 6-1 AND Operations

The value of the first argument is read down the left column, the value of the second
argument is read across the top, and the value of the result can be determined by finding the
indicated entry in the table.

OR false true undefined
false false true undefined
true true true undefined
undefined undefined undefined undefined

Table 6-2 OR Operations

The value of the first argument is read down the left column, the value of the second
argument is read across the top, and the value of the result can be determined by finding the
indicated entry in the table.

6.3 Equality Operators

The equality operators are used to determine whether two data items are equal or not equal
to each other. Data items can be compared for equality if both data items are of the same
type or can be converted to the same type. Data items are considered equal if they have the
same value in type to which they are coiverted. The following operators are used for
comparing expressions

<= equal
< > not equal

Table 6-3 Equality Operators

54 Serpent: Slang Reference Manual (CNfJ/SEI-9 I1-UG-5)

Expressions

The following is the formal syntax for equality expressions:

boolean_expression ::=

[booleanexpression equality_operator] relationalexpression

equality_operator ::= '=" I '<>'

Equality operations can return one of two values: true or false. The following are some

examples of eq ality comparisons

Operation Value
1 = 5 false

"7" = 7 true

3.4 =3 false

3 = 3.0 true
5<> UNDEFINED true
"Fred" = "Tom" false

Example 6-1 Equality Comparison

All operands of the same type can be compared for equality or inequality. In general,

operands of mixed type may be compared when there is a defined conversion between the

types. ID operands can only be compared with other ID operands. The exact semantics of
equality operations is defined in Appendix C.

6.4 Relational Operators

Relational operators are used to compare two data items to determine their relative values;

that is, if one data item has greater or lesser value than the other. Relational operators can

only be used to make numerical comparisons. They cannot be used, for example, to
alphabetize a list. Strings can only be compared if they can first be converted to a numerical

type.

The following operators are used for comparing expressions:

< less than
<= less than/equal
> greater than
>= greater than/equal

Table 6.4 Relational Operators

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 55

Expressions

TIhe following is the iormal syntax for relational expressions:

relational_expression ::=
[relationalexpression relational_operator]

arithmetic_expression
relationaloperator ::= '<' I '<-" I '>' I %>=

Relational operations can return one of three values: true, false, or undefined. The following
are some examples of relational comparisons.

Operation Value

1 < 5 false
"7 1> > 7 true

3.4 > =3 true

3 < = 3.0 true

5 > UNDEFINED UNDEFINED

Example 6-2 Relational Comparison

Operands used in relational operations must be either integers or real numbers or
convertible to these two types. When one or both operands used in a relational operation is
UNDEFINED, the result of the operation is also UNDEFINED. The exact semantics of
relational operations are defined in Appendix C.

6.5 Arithmetic Operators

Arithmetic operators provide basic math functions. Arithmetic operations are only defined

for numerical values. They cannot be used, for example, to add or concatenate strings.
Arithmetic operations on strings are performed by converting the strings to a numeric type

and then performing the arithmetic.

The following arithmetic operators are used for performing arithmetic operations on

expression pairs.

Operator Operation
+ addition

subtraction

* multiplication

/ division

* * exponentiat ion

Table 6-5 Arithmetic Operators

56 Serprnt Slatng Reference Manual (('MIJ/SII 91 -tJG-5)

Expressions

Addition and subtraction have lower precedence than multiplication and division, which in
turn have lower precedence than exponentiation. The following is the formal syntax for
arithmetic expressions:

arithmeticexpression

[arithmeticexpression additionoperator] term

term ::=

[term multiplication-operator] factor

factor ::=

[factor '**'] signed id
arithmetic operator ::= '+' I

multiplicationoperator ::= '*"

Arithmetic operations can return values of two types: integer or real. They may also return
UNDEFINED if either of the operands is UNDEFINED. The following tables give the type of
arithmetic operations:

+,-,*,** real integer undefined

real real real undefined

integer real integer undefined

undefined undefined undefined undefined

Table 6-6 Plus, Minus, Multiple and Exponential Operations

/ real real undefined

real undefined undefined undefined

integer real real undefined

undefined undefined undefined undefined

Table 6-7 Divide Operation

The exact semantics of arithmetic operations are defined in Appendix C. The following are

some examples of arithmetic operations:

Operation Value

1 + 5 6
"7" * 8 56

3.4 - 3 0.4
3 + 3.0 6.0

5/ UNDEFINED UNDEFINED

Example 6-3 Arithmetic Operation

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 57

Expressions

6.6 Unary Operators

There are two unary operators in Slang: unary negation and logical complement. Unary
negation is used to negate a single, numeric operand. Logical complement is used to negate
a single, logical operand. It is only defined for boolean values and undefined.

unary operator

NOT

Table 6-8 Unary Operators

The following is the formal syntax for unary expressions:

signedid ::=

unary_operator] id

unaryoperator

NOT I '-"

Unary negation can return values of two types: integer or real. Unary negation also returns
an UNDEFINED value when the operand is undefined. Logical complement can return one
of three values: true, false or UNDEFINED. The following are examples of the unary
operations:

Unary Operations Types
-5 integer
- "3.14" real

-UNDEFINED UNDEFINED
not true false
not LNDEFINED UNDEFINED

Table 6-9 Unary Operations

58 Serpent Slang Reference Manual (CMU/SEI-91-UG-5)

Code Snippets and Statements

7 Code Snippets and Statements
A code snippet is a fragment of procedural code within a dialogue specification that is

executed in response to specific conditions. Code snippets are used to specify actions on
create, actions on destroy, object attributes, object methods, and variable declarations. A

code snippet consists of a collection of Slang statements.

The following is the formal syntax for code snippets:

codesnippet = '{' [statements] 'I'
statement :=
function-call
assignment_statement I

conditional-statement I
loopstatement

Slang statements are all terminatecd by the semicolon character.

7.1 Function Call

A function call is a transfer of control to a procedure that exists outside of the Slang

language but within the Serpent runtime system. Functions in Slang may or may not return

a value but must not modify any of the actual parameters to the function. A function call

may be a statement by itself (an imperative statement) or it may be a component of an

expression. Predefined functions are defined in Appendix D and Appendix E.

The following is the formal syntax for imperative statements and functions:

function-call :
function name '(' [expressions] ')'

expressions ::= {expression ','} expression

The following vre some examples of function call statements:

destroy sd instance(id);
putvariablevalue(vcid, "fred", 17);

Example 7.1 Function Call Statements

Serpent. Slang Reference Manual (CMU/SEI-91-UG-5) 59

Code Snippets and Statements

7.2 Assignment Statement

The assignment statement is used to set the value, and possibly type, of the data item on the

left-hand side of the assignment operator to the value and type of the expression on the
right-hand side of the operator.

The following is the formal syntax for assignment statements:

assignmentstatement

qualifed name 1:=" expression

The following are some examples of assignment statements.

a "string";

a 7;
id create sd instance(element name);

Example 7-2 Assignment Statements

When the named identifier on the left-hand side of the assignment statement corresponds

to a dialogue variable, both the type and value of the variable are set to the type and value

of the expression. When the identifier corresponds to a shared data item or an object
attribute, the value of the expression is converted to the type of the shared data item or

attribute. The exact semantics of the assignment operation when the left-hand side of the

statement is a shared data element or object attribute is defined in Table 12-3.

7.3 Conditional Statement

The conditional statement is used to provide optional execution of statements.

The following is the formal syntax for If statements:

conditionalstatement ::= (

Ii boolean condition Then

statement s

{Elsif boolean condition Then

statements)

[Else

statements]
End If

60 Serpent. Slang Reference Manual (CMU/SEI-9 1-UG-5)

Code Snippets and Statements

The following are examples of If statements:

If (a > 0) Then

value = "positive";

Elsif (a = 0) Then

value = 'zero";

Else

value = "negative"

End If;

If (b > 5) Then

printf("b greater than five.");

Elsf (b > 0) Then

printf("B greater than zero but less than five.");

End If;

Example 7-3 Conditional Statements

When evaluating a conditional statement, the condition after the IF part and any conditions
after the ELSIF parts are evaluated in lexical order (treating the final ELSE as an ELSIF
true THEN) until one of the conditions is true or all the conditions are false. If one of the
conditions evaluates to true the corresponding statements are executed; otherwise, none of
the statements is executed.

7.4 Loop Statement

The loop statement is used to perform controlled iteration of Slang dialogue statements. All
of the statements contained within the while loop are executed as long as the boolean
condition evaluates to true.

The following is the formal syntax for the while statement.

loopstatement :

While boolean condition [DO]

statements
End While

Serpent: Slang Reference Manual (CMU/SE-91-UG-5) 61

Code Snippets and Statements

The following is an example of a while loop that calculates the value of 5! (5 factorial).

i := 1;
X :=;
While (i < 5) DO

i i+l;

X X * i;

End While;

Example 7-4 While Statement

The boolean condition of a loop statement is checked before the loop is entered. This means

that the statements contained within the loop may not execute at all if the condition is not
initially true. 0

62 Serpent:" Slang Reference Manual (CMU/SEI-91-UG-5)

Interaction Objects

8 Interaction Objects
Interaction objects are the means by which an end user visualizes and interacts with an

application system. Interaction objects are instances, in the toolkit layer, of objects

specified in a Slang dialogue. Objects in a Slang specification are object templates (for

example, a label widget in the Motif toolkit binding). When the specification is executed,

object instances are created within the dialogue. These object instances are passed to the

toolkit layer and become interaction objects. Object instances are created when the view

controller containing the object template is instantiated. An instance of an object is assigned

an identifier when it is created and the identifier can be retrieved using the data access
routines described in Appendix D.

Each object template has a collection of attributes that define the presentation of instances

created from it, as well as methods that determine the high level interactions that the end

user can have with the object. The syntax for object templates is:

objects : :=

Objects ':' objectdeclaration { objectdeclaration

objectdeclaration ::=

object-name ':' objecttype_name

Attributes f: { attribute-value }
Methods ':' { method handler]

8.1 Attributes

Attributes are used to define the presentation characteristics of object templates. Object

atuibutes 'ave ibed types of boolean, integer, real, string, buffer, or [D. Since attributes are

used to communicate with toolkits, they also have semantic meaning that is defined by the

toolkit integrator.

Attributes are created and destroyed along with the object instance in which they are

defined. The scope of an attribute is identical to the scope of the object template in which

it is defined. Attributes may be accessed from outside their scope if the exact path is known.

Access is accomplished using the data access routines described in Appendix D.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 63

Interaction Objects S

Object attributes allow the specification of either code snippets or expressions that are

associated with the attribute. Each specificatiou is executed initially when the object

instance is created and every time any of the data items (if any) referenced in the

specification is modified. That is, the value of an attribute that depends upon certain data

items is recalculated whenever those data items are modified.

The following is the formal syntax for attributes:

attribute-value ::= attribute name ':' av choice

av choice =

codesnippet
I expression

The following are some examples of attribute definitions.

x: 5;
y: (x + 10) / 2;
label: temperature

color: {
If (temperature < 32) Then

color: ="blue";
Elsif (temperature < 100) Then

color := "white";
Else

color 'red";
End If;

Example 8-1 Attributes

Both the color and the label attributes, in the above example, are reevaluated whenever

temperature changes. In the latter case, the integer value of temperature is automatically

converted to the type of the label attribute (string).

8.2 Methods S

Methods provide a way for handling end-user interactions in the dialogue by specifying

actions to be performed for specific end-user generated events. Methods are executed once

for each generated event and are procedural in nature. The number of and names of the

methods for a given interaction object are defined by the toolkit integrator.

The following is the formal syntax for methods:

methodhandler ::= method name 1:' code-snippet

64 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Interaction Objects

The following are some examples of method definitions:

Methods:

notify:

displaysizes submenu := True;
I
send:

file name := text-buffer;

new file name := True;

Example 8-2 Methods

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 65

Interaction Objects

S

0

S

S

0

S

S

66 Serpent* Slang Rrference Manual (CMUISEI-9 i -UG-5)

S

View Controllers

9 View Controllers
A view controller template is used to control which interaction objects are presented to the
end user under which circumstances. A view controller is an instance of a view controller
templaie. View controllers provide a means of logically grouping interaction objects that
are displayed and removed as a unit. When a view controller template is instantiated, the
associated object templates are instantiated as object instances and passed to the toolkit
layer as interaction objects. An example of this is a form containing multiple fields. Each
field in the form is represented by a separate object template, but the entire form would most
likely either be displayed ir removed as a unit. View controllers may contain other view
controllers nested to an arbitrary depth.

The following is the formal syntax for view controllers:

vc : :=

VC ':' vc name crEation condition

componentlist

(vc I

ENDVC vc name [;)

componentlist

[variables]

(objects]

[actionsoncreate]

[actions on destroy]

View controller instances are assigned identifiers in the same fashion as shared data element
instances. The identifiers can be retrieved by means of the data access routines de-cribed in
Appendix D.

9.1 Creation Conditions

Each view controller has a creation condition that defines the condition under which the
view controller is instantiated.

The following is the formal syntax for creation conditions:

creation condition

Creation Conditmon ':' boolean condition

Serpen.: Siang Reference Manual (CMU/SEI-91-UG-5) 67

View Controllers

There are two different classes of creation conditions in Slang: free and b :und. Free
creation conditions are boolean conditions that may reference existing data items. View
controllers with a free creation condition can only be instantiated as many times as the
surrounding view controller. The following are examples of free creation conditions:

Creation Condition: (True)

Creation Condition: (a < 5)

Creation Condition: (x = 1)

Example 9-1 Free Creation Conditions

Both a and x must be either variables or previously bound shared data items.

The second class of creation conditions causes the instantiated view controller to be bound
to an instance of shared data. A bound creation condition must reference a single shared
data item. It causes the view controller to be instantiated when an instance of the shared data
element is created that is not currently bound to an instance of the view controller. This is
accomplished by using the new function within the creation condition. The new function
does not create new shared data; rather, it returns true when a new shared data item is
created and becomes false when the shared data item is deleted.

A binding creation condition can also reference a component of a shared data element to

cause the view controller to be intantiated only when a particular component assurn'
particular value.

Creation conditions are within the scope of the enclosing view contrcller. Thus, only data
items within the scope of the parent view controller can be used in a creation condition.
References to shared data elements that have been bound in a parent view controller are not

bound by the current creation condition.

The following are examples of bound creation conditions:

<reation Coniition: (new('employee"))

Creation Condition: (new('empioyee") and display=true)

Creation Condition: (employee.location = "Pittsburgh")

Example 9-2 Bound Creation Conditions

Creation conditions cannot reference morc than one non-bound shared data element. They'

can, however, reference any number of constants, variables, or attributes as long as they
exist at the time the creation condition is evaluated. This does not include variables and
attributes defined within !he view controllei for which the creation condition applies.

68 Serpent Slang Reference r anaI (CMUISEI-9I-UG-5)

View Controllers

A view controller can only be instantiated if its parent already exists. In other words, in

order for the creation condition for any view controller to be true, the creation condition for
all the view controller's ancestors must also be true.

A view controller is destroyed when its creation condition becomes false, or the shared data

instance that caused it to be instantiated is removed from the shared database. When a view

controller is destroyed, all view controllers nested below it and child interaction objects of

that view controller are also destroyed.

9.2 Actions "On Create"

Actions "on create" are used to specify a code snippet to be executed upon the creation of

a view controller. Actions on create are executed once when the view controller is created;

they are not reevaluated if the variables on which the code snippet is dependent change. The

specification of an action on create code snippet is optional.

The following is the formal syntax for actions on create:

actions on create ::= On Create ':' [code-snippet)

The following is an examplc of an action on create:

On Create: I
counter := counter + 1;

Example 9-3 Actions on Create

9.3 Actions on Destroy

Actions on destroy are used to specify a code snippet to be executed upon the

destruction of a view controller. Actions on destroy are executed once, when the view
controller is destroyed. The specification of an actions on destroy code snippet is
optional.

The following is the formal syntax for actions on destroy:

actions on destroy ::= On Destroy ': [codesnippet]

Serpent" Slang Reference Manual (CMU/SEI-91-UG-5) 69

View Controllers S

The following is an example of an action on destroy:

On Destroy: {
counter := counter - 1;

Example 9-4 Actions on Destroy

9.4 Dependency Considerations 0

The interaction of three concepts within Slang can be important and confusing in some
dialogues. The three concepts are: automatic reevaluation of some snippets (those used in
variable declarations and those used in attribute definitions), the one-time evaluation of
other snippets (those used within on create and on delete), and the timing of the
creation of variables and objects withini an instantiated view controller. In particular:

" Variables are evaluated before actions on create are executed. Thus, an
action on creation can use the value of a variable set in its specification.

" Variable declarations are reevaluated when any independent variable within it is
changed. Thus, a variable can be defined in terms of an attribute of an object
created within the same view controller. When the attribute is modified or given
a value, the variable declaration will be re-executed and a new value of a variable
calculated. •

" Actions on create are executed prior to the evaluation of attributes for
objects. Thus, an action on create may depend on a variable declared in the same
view controller, as indicated above. If that variable depends only on items
outside the scope of the current view controller, or on other variables within the
scope of the current view controller, then the expected behavior will be
observed. On the other hand, if the variable depends upon an attribute of an
object declared in the current view controller, the action on create will not
yield the expected result. The sequence that causes the problem is:

" Evaluate variable (since attributes of objects are not yet defined, the
variable will use an UNDEFINED value for the attribute). •

" Perform the actions on create.

• Evaluate the attributes of the object.

Since the variable depends on one of the attributes, it is reevaluated. Since actions on
create are only performed once, they are not reevaluated.

70 Serpent- Slang Reference Manual (CMI I/SE1-91 -UG-5)

View Controllers

9.5 Dialogue Structure

A Slang dialogue contains the specification of a user interface for a single application. The

dialogue may be either a prototype or the user interface of a final product. Dialogues cannot
be called or included from other dialogues.

The following is the formal syntax for a Slang dialogue:

Slangdialogue = prologue [externals] componentlist {vc}

The dialogue, as such, consists of the prologue, external declarations, a list of top level

components, and a list of view controllers. Each of these top-level components is discussed
in the following sections.

9.5.1 Prologue

Each Slang program must indicate the shared data files and toolkits that it uses. This is done
in a prologue to the actual Slang program.

The prologue section of the dialogue is used to include the various .ill files required by the

dialogue. An .ill file is a file that is generated when an application or toolkit shared data
definition file is run through the Saddle preprocessor. Serpent: Saddle User's Guide
contains more information on this process.

The prologue lists the shared data definitions and toolkit shared data. The form of this list is:

#include 'name.illf

#include "dm.ill"

#include Itechl.ill"

#include "techn.ill"
III

where name is the name of the application shared data. sdd file. This can be omitted if

there is no application shared data. The special name dm. i l is the name of the dialogue
shared data. This can also be omiUed if there is no dialogue shared data. The special
delimiter Ill" is used to indicate the end of the proliogue.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 71

View Controllers 0

Each toolkit being used requires its own entry in the list. For the Athena X toolkit, the entry
is:

#include "sat.ill"

For the Motif toolkit, the entry is:

#include 'smo.ill"

The dialogue must include the .ill files for each toolkit referenced in the dialogue, the
application .ill file if communication is required between the dialogue and application, and
the dm. ill file if dialogue shared data is to be used.

The following is the formal syntax for the prologue section of the dialogue:

prologue ::= ill file contents { ill file contents } 'I I "

The following lines provide a sample prologue section of a dialogue.

#include 'app.ill"

/* application shared data
definition*/

#include "dn.ill"

/* dialogue manager shared data*/

#include 'sat.ill"

/* Serpent Athena Toolkit */

#include "tech_y.ill"

/* S-cond I/O toolkit*/

Prologue

9.5.2 Component List

The top-level dialogue structure can also be thought of as a view controller with a creation
condition of true, with certain exceptions-the inclusion of both a prologue and externals
section. As such, the dialogue can have almost all the same components as a view
controller.

72 Serpent" Slang Reference Manual (CMU/SEI-91-UG-5)

View Controllers

The following is the formal syntax for the component list:

component_list ::= [variables) [objects] [actions on create]

[actions on destroy

Objects declared directly in the top level of the dialogue are always visible. Actions on
create are executed immediately during execution of the dialogue. Actions on destroy

are executed on dialogue exit.

Serpenz: Slang Reference Manual (CMU/SEI-91-UG-5) 73

I

View Controllers

74 Srpet: lan Refrene Mnua (C~U/SI-9I -G-0

-- --- --

User-Defined Functions

10 User-Defined Functions
Slang provides a mechanism for invoking externally defined C functions from within a

dialogue. The C function must be declared as an external in the Slang dialogue. The

limitations on the C functions are:

1. They must be true functions; that is, a function should not modify any of its

parameters. Thus, for example, the C library function strcat Cannot be used

directly since it returns the result in the first argument.

2. Functions that return arguments of type string or real must allocate static

memory to hold the results.

10.1 External Functions

The following is the tormal syntax for the externals section of the dialogue:

externals ::= {Externals ':" {externaldeclaration)}
external-declaration ::= externaltype
functionname "(' [parmlist] ')'
externaltype ::= Boolean

Buffer
Id
Integer
Real
String
Void

parm list (parm ','} parm
parm Boolean

Buffer
Id
Integer
Real
String

The functionname can be any valid Sidng name. Note that Slang can only bind to

external functions whose names consist entirely of lower case letters and digits. The

derlaration roid FUNC (string, st ring) ; is identical to void func (string,

string) ; and maps into external function func. This restriction exists primarily because
Slang is case insensitive while C is case sensitive.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 75

User-Defined Functions 0

The number of parameters accepted by the function should match the number and types

given in the parmlist. It is possible to have functions with no parameters. For example,

there is no character type in Slang. C functions that accept or return values of type character

cannot be used.

Object files for external functions may be placed in a UNIX archive library (see UNIX ar(1)

command) and the library may be passed to the Serpent command using the -L option to

force the routines to link with the dialogue. Object files for external functions may also be

linked directly using the -L option of the Serpent command. See Serpent: System Guide for

a description of the Serpent command.

Note: not all valid C types have a defined conversion.

Example 10-1 shows external declarations in a Slang dialogue.

/* string processing */

integer strlen(string);

integer strcmp(string, string);
/* mathematical functions */

integer abs(integer);

real cos (real);

real pow(real, real);

Example 10-1 External Declarations 0

Once declared, the function can be used anywhere a function statement is valid in a Slang
dialogue.

10.2 Existing External Functions 0

An external library of Slang-callable functions is supplied with Serpent. The serpent
command ensures that this library is linked with Slang programs that require it. (See

Serpent: System Guide for more information on the serpent command.) The definitions for
each set of functions are available by including the appropriate header file. These header
files, described in this section, reside in the directory externsfinclude under the installed

Serpent directory; each one specifies the EXTERNALS keyword followed by a series of
documented function definitions.

Each function package is described more completely in this section. Note that Slang forces
references to a function to lower case and searches for the lower case version of the name.

76 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions

10.2.1 Slang String Functions

The Slang string functions provide useful string manipulation routines. These functions are

made available by including header file sstring. ext. In Slang, as opposed to C, strings

are indexed starting from 1. The following is a list of the available functions, with a brief

description of each one. A more complete description follows the list with examples

showiwg how one might use the functions.

Function Description

string_append Appends one string to another, returning the new string.

stringcountchars Counts the number of occurrences of a single character or

a set of characters in a string.

stringdelete Deletes a substring from a string.

stringindex Finds the first occurrence of a substring within another

string, returning the position of the substring.

stringinsert Inserts one string inside another.

string is integer Determines whether a string represents a valid integer.

stringisreal Determines whether a string represents a valid real

number.

stringlength Returns the length of a string.

stringlower Converts each upper-case character in a string to lower

case.

string_upper Converts each lower-case character in a string to upper

case.

substring Returns the specified "slice" from a string.

Table 10-1 Slang String Functions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 77

User-Defined Functions, st ringappend

Function

string_append

Description The string_append function appends one string to the end of

another string.

Syntax stringappend (initialstring,terminal string)

Parameters initial-string The string on which to append

terminal-string.

terminalstring The sting to append to initial strin.

Returns A new string is returned containing the result. The original strings are

left unchanged.

78 Serpent. Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions, string count chars

Function

string count chars

Description The stringcountchars function counts the number of

occurrences of a single character or a set of characters in a string.

Syntax string_count_chars (thestring, charset)

Parameters the-string The string to be checked.

charset A string containing characters to be counted.

The function counts the number of times any

character from this string appears in

thestring. That is, to count only

occurrences of a single character, this string

should only contain one character.

Returns A count (integer) of the number of times that characters from

charset were found in the_string. 0 means none were found.

Serpent. Slang Reference Manual (CMU/SEI-91-UG-5) 79

User-Defined Functions, string delete

Function

string delete

Description The string-delete function deletes a substring from a string.

Syntax stringdelete

(targetstringstartingposition,

substring_length)

Parameters targetst ring The string from which to delete.

starting-position The start of the substring to be deleted.
This value must be between 1 and the

length oftargetst ring.

substring_length) The length of the substring to be deleted.

Cannot extend past the end of

targetstring.

Returns A new string is returned containing the result. If any error is detected,

(e.g.,startingposition or substring_length is incorrect) a

null string is returned. The original string is left unchanged.

80 Serpent Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions, string-index

Function

stringindex

Description The stringindex function finds the first occurrence of a substring

within another string, returning the position of the substring.

Syntax string index (source-string, substring)

Parameters source string The suing in which to search.

substring The suing to locate.

Returns If the substring exists within source string, its location, offset
from 1, is returned. Otherwise, a 0 is returned.

NOTE: Specifying a substring that is longer than the source string is
not treated as an error. Since the substring can never be found, an 0 is
returned in this case.

Serpent: Slang Reference Manual (CMU!SEI-91-UG-5) 81

User-Defined Functions, string_insert

Function

stringinsert

Description The string_insert function inserts one string inside another at the

specified position.

Syntax string_insert •

(basestring,insert string,position)

Parameters base_st ring The string in which to insert.

insertstring The string to be inserted.

position The position (integer) in basestring at
which to insert The restrictions on this

argument are:
1. Position must be greater than 0.
2. If position is 1 past the last character in

basestring,insert_stringis
appended to base_string. (See

string_append.)
3. Position cannot be greater than
stringlength (basestring + 1).

Returns A new string is returned containing the result. If position is in
error, a null string (..) is returned. The original strings are left
unchanged.

82 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions, string is integer

Function

string is integer

Description The stringis integer function determines whether a string

contains only decimal digits.

Syntax stringisinteger (thestring)

Parameters the_string The string to be checked.

Returns FALSE - The string does not represent a valid decimal integer.

TRUE - The string represents a valid decimal integer.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 83

User-Defined Functions, string_is real

Function

string is real

Description The stringisreal function determines whether a string

represents a valid real number.

Syntax string is real (thestring)

Parameters thestring The string to be checked.

Returns FALSE - The string does not represent a valid real number.

TRUE - The string represents a valid iet number.

4

84 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

I User-Defined Functions, string_length

Function

string__ength

Description The stringlength function returns the length of a string.

Syntax string_length (target-string)

Parameters target_string The string to examine.

Returns The length (integer) of the string. 0 means that the string was empty.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 85

User-Defined Functions, st ring_lower

Function

stringlower

Description The string_lower function converts every uppercase alphabetic

character in a string to lower case, leaving all other characters
untouched.

Syntax string-lower (the_string)

Parameters thestring The string to be converted.

Returns A new string is returned containing the result. The original string is left
unchanged.

86 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions

Function

stringupper

Description The stringupper function converts every lowercase alphabetic

character in a string to uppercase, leaving all other characters

untouched.

Syntax stringupper (the_string)

Parameters thestring The string to be converted.

Returns A new string is returned containing the result. The original string is left

unchanged.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 87

0- -. ,. M i i l mu l m ini lRI

User-Defined Functions, substring

Function

substring

Description The substring function returns the specified portion of a string.

Syntax substring (sourcestring, position, length)

Parameters sourcestring The string from which to extract a substring

position The starting position (integer) of the substring.
This value must be between 1 and

string_length (sourcestring)

st ring-length The length (integer) of the substring. This
value must be greater than position and

must not result in a value greater than

stringlength source_string) S
when added to position.

Returns A new string is returned containing the result. If the length values are

inconsistent, a null string (.) is returned. The original string is left S
unchanged.

88 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions, substring

10.2.2 Extended Arithmetic Functions

The ex'ended arithmetic functions provide additional arithmetic functionality not already

available in Slang. The following is a list of the available functions, with a brief description

of each one. A more complete description follows the list. These functions are available by
including header file arith. ext.

Function Description

div A function-oriented integer division operator.

make_integer Converts a Slang expression to an integer, forcing truncation if
necessary.

mod A function-oriented integer modulo operator.

truncate Converts a Slang expression to an integer, forcing truncation if
necessary.

Table 10-2 Extended Arithmetic Functions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 89

User-Defined Functions, div

Function

div

Description The div function provides an integer division operator.

Syntax div (dividend, divisor)

Parameters dividend The integer to be divided.

divisor The integer by which to divide dividend.

Returns The integer portion of the quotient. Any fractional portion is

discarded. This is equivalent to makeinteger(dividend/

divisor).

90 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions, makeinteger, truncate

Function

makeinteger, truncate

Description The makeinteger function converts a Slang expression to an
integer, forcing truncation if nccessary. It is also callable as

truncate.

Syntax make_integer (operand) truncate (operand)

Parameters operand ne expression, variable, or attribute to be

converted to integer.

Returns An integer version of the expression, variable, or attribute is returned.
Real data is truncated, not rounded.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 91

User-Defined Functions, mod

Function

inod

Description The mod function provides an integer modnIlo operator.

SN-ntax mod (dividend, divisor)

Param-eters dividend The integer to be divided.

divi;sor The integer by which to divide dividend.

Returns The remainder (integer) from dividing divi den~dby divisor.

92 Serpent Slang Reference Manu~al (CMU/SEI-9 1-UG-5)

User-Defined Functions

10.3 Using External Functions

External functions can be called from Slang: either existing C functions or new ones created
as described in Section 10.3.2.

10.3.1 Existing C fu~nctions

There are many reasons to use external C functions. C has a rich library of utility functions
that are available. For example. many of the string routines translate directly into C library
calls. The C libraries are automatically linked ino the Slang runtime without a necessity of
explicitly stating the libraries in the serpent command. As another example, when

debugging Slang programs, it is often useful to print debug messages in the window from
which Serpent was invoked. The simplest way to accomplish this is to use existing C 1/0
routines. It is possible. for example, to call the C function printf from within a Slang
program.

Note that Slang assumes that each external function has a fixed number of parameters:

further, each parameter is assumed to have a fixed type. While printf does not
traditionally behave in this way, it is still possible to use it in a Slang program. Consider the
following Externals section of a Slang program:

Externals:
void printf (string, integer);

void puts (string);

With these declarations in place, you can now make the following calls in a Slang code
snippet

printf ("counter = %d and inputstring = ", counter);

puts (input_string) ;

Some of the versatility of print f is lost, of course. Since the EXTERNALS declaration
specifies that the second parameter to print f is an integer, you can't use print f to
display real numbers; if you do, they'll be truncated to integers before print f is actually
called. Further, this binding to printf specifies that it expects only two parameters; you
cannot call it with more than two parameters in this case.

You can only bind to an external function once. In other words, the following EXTERNALS

section is not legal Slang:

Externals:

void printf (string, integer);

void printf (string, real);

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 93

User-Defined Functions 0

The easiest way around this dilemma is to create your own routines that, in turn, call

print f with varying type and varying number of parameters. These routines can then be

used from within a Slang dialogue.

Electronic examples of how to use external functions are included in the base Serpent

distribution in the subdirectory demos / saw/s lang- ref.

10.3.2 Creating New External Functions

This section discusses the writing of an external C function to be called from a Slang

program.

10.3.3 Type Equivalences

Slang data types map into specific C data types, as outlined in the table below. Types

marked with [S] are defined in the "serpenth" header file (which resides in the "include"

subdirectory in your Serpent directory tree); these types are briefly described following the •

table. Types marked with [M] have specid memory allocation requirements which are

described in following section.

Slang Data Type Corresponding C Data Type

real double * (i.e., pointer to double) [M]

integer int

string char * [M]

boolean boolean [S]

id iid_id-type [S]

The boolean type is an integer that can be set to a true or false value. The definition of

boolean also supplies a series of true and false constants. A true value can be specified with

any one of the following constamts:

true TRUE True on

Likewise, a false value can be specified with any one of:

false FALSE False off

The id type is used within Serpent to identify items in the shared database. You are

discouraged from writing external functions that manipulate ids; however, in the interests

of completeness, the type is included here. Ids are currently typed as long integers in C,

94 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions

although in future releases of Serpent that representation may change.

The string type maps into a standard C string. That is, a Slang string variable is assumed to
be either a NULL pointer or a pointer to a series of characters terminated by a null (i.e., V)')
byte.

10.3.4 Memory Allocation Considerations

Inside Serpent, variables of type boolean, id, and integer are stored as immediate data, so
no memory allocation is required. That is, if you write a function that returns a boolean, id,
or integer, you do not have to allocate memory to return the value; you can return it on the
stack, as illustrated by this function to add two integers:

int intadd (opl, op 2)

int opl;

int op2 ;

return (opl + op2);
I

However, as the table above indicates, strings and real numbers are stored internally as
pointers. Serpent assumes that the memory a string or real pointer refers to has been
allocated by a special memory allocation routine called makenode () .

The make-node () routine is similar to the conventional C malloc () routine: it takes a
single parameter specifying the number of bytes to allocate and returns a pointer to the
allocated area. The returned pointer should be cast to the appropriate pointer type. To make
use of make_node () , you must include the following lines in your source file:

#define memoryPack
#include 'memoryPack.h"

(Both lines are necessary; the "#define memoryPack" line must precede the include
directive.) It is important that you use makenode () to allocate memory, rather than
malloc () or some other allocation routine; whenever the Serpent runtime system frees
memory, it assumes the memory was allocated with makenode (.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 95

User-Defined Functions0

As an illustration, contrast the above function to add two integers with this function to add
two Slang real numbers:

#include <stdio.h>

#define iemoryPack

#include "memoryPack.h"

double *real-add (opl, op2)

double *opl;

double *0p2 ;

double *result;

if

(result = make node (sizeof (double)))

(double*) NULL

*result = *opl + *op2 ;

return (result);

For example, the code below implements the Slang f unct ionstring-upper:

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#define memoryPack

#include 'memoryPack.hf

char *string_upper (the_string)

char *the-string;

int length;
char *result =NULL;

char *s;

if ((length =strlen (the-string)) > 0

if ((result = (char *) make-node (length + 1))==NULL

(void) fprintf (stderr,
"Nstring upper: memory allocation error for string %s\n",

the-string)

elsef

for (s = result; *the -string !='\0'; s++, the string++)
if (islower (*the_string)) *s - toupper (*the-string);

96 Serpent: Slang Reference Manual (CMUISEI-91-UG-5)

User-Defined Functions

else
*s = *thestring;

*s =

return (result);

10.3.5 Linking External Functions To Slang Programs

If you orly use the external functions supplied with Serpent, you can skip this section, since
the serpent command automatically searches the Serpent externals library when it links a

dialogue. However, if you plan to write your own external functions, this section describes
how to link them into a dialogue executable.

After you've written your external function (or functions), you must load them into an
archival library (see the documentation for the Unix ar(1) command for more information
on archival libraries). For example, suppose your functions reside in file "myfuncs.c". After

compiling the file and producing "myftmcs.o", you might load the object file into archival
library "mylib.a" with these commands:

% ar r mylib.a myfuncs.o

% ranlib mylib.a

(The "%" is the Unix prompt.)

Next, when linking a dialogue that calls one of your functions, you have to tell Serpent to

resolve that function reference from'".mylib.a". Use the "-L" option on the serpent
command to accomplish this. Suppose, for example, the dialogue in file "mydialog.sl" uses
a function in "myfunc.c". You would compile and link "mydialog.sl" using the following

serpent command:

% serpent -cl -L mylib.a mydialog.sl

Refer to the manual page for the serpent command for more information on the -L option.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 97

User-Defined Functions

0

0

0

0

S

0

0

0

98 Serpent: Slang Reference Manual (CMUISEI-91-UG-5)

0

Runtime System

11 Runtime System
The Slang runtime system, or dialogue manager, is based on a system production model.

That is, Slang statements are interpreted as rules to the runtime system and these rules are

triggered whenever a data item is created, deleted, or modified. The runtime system keeps

track of those data items that depend on other data items. Whenever the independent data

items are created, deleted, or modified, the dependent data items are reevaluated.

The reliance of Slang on dependency is one of the most powerful features of the language,

but it has several implications of importance to the dialogue specifier. These are:

determination of cycles, the time that data is available to application and toolkits, and

avoiding the dependency mechanism.

11.1 Cycles

Dependencies among data items are detected at runtime. This allows a dependent data item

to depend upon the minimum possible number of independent data items but it also implies

that cycles in dependencies can only be detected at runtime. A cyclic dependency occurs
when two (or more) variables or object attributes are mutually dependent on each other. The

following example illustrates a cyclic dependency:

x: y - 1
y: x + 1

This dialogue specification causes a cycle that the dialogue manager detects by counting

the number of times a particular snippet is executed. Whenever that number exceeds a

threshold, a cycle is determined to have occurred, execution is terminated, and an error

message generated.

11.2 Timing of Data Transfers to Application and
Toolkit

Activities within the dialogue manager are triggered by an external event. That event is the
receipt of data from either the application or one of the toolkits. Once the dialogue manager

is triggered, it processes all of the data dependencies that exist until no more data remains

unchanged. At this time it informs the application and the toolkits of all changes in their
respective shared data. The processing of all data dependencies occurs in a process called

a minor cycle.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 99

Runtime System

There are several implications of the fact that the dialogue manager processes all changes

prior to informing the application or the toolkit (,f any changes:

" If a single data item is modified multiple times during a collection of minor
cycles, only one change is sent out.

" The end user sees all changes to an interaction object at one time. If the
dialogue generates some portion of the output and then calls an external
function prior to generating the rest, the toolkit will not be informed of any
changes until the external function exits. Thus, looping in an external function
that returns one line of output at a time will not produce the expected results.

In general, the automatic runtime propagation of data is a very powerful mechanism, but
occasionally it produces some behavior that is difficult to understand without a more in-
depth explanation of the system.

11.3 Implications of Dependencies

It is important when writing dialogues to understand when dependencies are automatically
propagated and when they are not. In general, computations associated with variable

declaration and object attribute declaration are targets of propagation. Computations
associated with methods, actions on create, and actions on delete are not targets of

propagation. Some implications of this follow.

Counters are handled by declaring them in the variable section, incrementing them in the
on create section and decrementing them in the on delete svction.

Shared data items cannot be declared to be dependent upon other data items. Thus, shared
data items need to be explicitly modified when they should be changed. On the other hand,

other data items can be dependent upon shared data items and are automatically
recalculated when necessary.

0

100 Serpent. Slang Ref erence Man--l (CMUISEI-91-UG-5)

Slang Preprocessor

12 Slang Preprocessor
Serpent -e-s the C preprocessor. The C preprocessor is used to make macro substitutions,
conditional compilations, and inclusions of named files. All C preprocessor commands
begin with the # symbol. The # symbol most be located in column one followed by one of
the preprocessor commands. The character following a line break character is considered
the first character of the next line.

Preprocessor control lines may also be extended on the following line by inserting a
backslash 'V character in the last position in a line. This causes the backslash character to
remove itself and the following line break character. Backslash characters in normal Slang

text are illegal.

12.1 Macros and Conditional Compilation

S!arg uses the same preprocessor as the C programming languae Thi 7reprecessor is a
simple macro processor that processes the source text of a Slang program before the
compiler processes the source program.

The preprocessor supports the following commands:

Command Description
#define identifier token-string Define apreprocessor macro.
#undef name Remove a macro definition.
#include "filename" Insert text from another file.
#if expression Conditionally perform some action,

based on the value of a constant

expression.
#ifdef identifier Conditionally include some text, if

preprocessor identifier is defined.
#ifndef identifier Conditionally include some text, if

preprocessor identifier is not defined.
#else Alternately include some text, if the

previous #if, #ifdef, or #ifndef test
failed.

#endif Terminate conditional text.
#line constant identifier Supply a line number for compiler

messages.

NOTE: The preprocessor commands must be in lower case. If lowercase letters are nnt
used, the preprocessor will return an error message.

Serpem: Slang Reference Manual (CMU/SEI-91-UG-5) 101

Slang Preprocessor

Please refer to A C Reference Manual, Samuel P. Harbison, Guy L. Steele Jr., Second

Edition, pages 26-48 or The C Programming Language, Brian W. Kernighan and Dennis
M. Ritchie, pages 207-208 for more information about the C preprocessor.

102 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Glossary of Terms

Appendix A Glossary of

Terms
application layer
Those components of a software system that implement the "core" application functionality
of the system.

application shared data
The section of the shared database associated with the application. This data acts as the
interface between the functional portion of the application system and Serpent.

atomic data item
A shared data component or a variable.

attribute
A characteristic of an interaction object that may be defined by the dialogue specifier.

bound
Associated with. A view controller instance is bound to the shared data instance for which
it was created.

code snippet
"Islands" of procedural code that are executed at certain defined times in the execution of
a dialogue or as a result of changes in the state of the system.

creation condition
The conditions under which a view controller template is instantiated.

data item
Anything that can be declared or specified in Slang.

dialogue
A specification of the presentation of application information to, and interactions with, the
end user.

dialogue layer
Serpent layer that controls the dialogue between the application and the end user of the
application.

dialogue manager
Serpent component that executes the dialogue.

dialogue model
The dialogue model provides the conceptual basis for dialogue specification. The dialogue
model is primarily based on a data-driven, rule-based production model.

Serpent: Slang Reference Manual (CMU/SEI-91-U&-5) 103

Glossary of Terms

dialogue shared data
Mechanism that allows a dialogue to create, modify, and destroy instances of data without
informing an application or toolkit of the activities.

dialogue variables
Variables defined in view controllers within a Slang dialogue.

drop-down menu
Menu that consists of a menu bar that contains a number of options. Selecting an option
causes a submenu to appear directly below the menu bar.

extent
Refers to the period of time for which storage is allocated for a data item.

ID
Unique instance identifier of those Slang data items that may "Z-. c multiple instances.

I/0 toolkits
Existing hardware/software systems that perform some level of generalized interaction
with the user.

interaction object
Objects that exist in a given toolkit and can be used to interact with the end user.

lexical structure
The characters that may appear in a Slang dialogue and the lexical units or tokens that they
may form.

method
Provides a way for handling end-user interactions in the dialogue by specifying actions to
be performed for specific end-user generated events.

path
Description of the location of a data item in the dialogue structure.

presentation layer
Serpent layer concerned with low level interaction with the user. This layer consists of the
various I/O toolkits.

presentation independent
Independent of the user interface of the system.

scope
The scope of a data item is the set of statements and expressions in which the declaration
of the identifier associated with that data item is valid.

shared data
Data that is managed by Serpent except for variables declared within view controller
templates.

104 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Glossary of Terms

shared database
Data managed by Serpent. The database consists of application data, presentation data, and

global dialogue data.

shared data definition
A shared data structure that may be instantiated at runtime; may be either a record or a

scalar.

shared data instance
An instance of a shared data element.

shared data item
A component of a shared data record instai.ce or a shared data scalar instance.

tokens
The smallest lexical units that are recognized by Slang.

transaction
A collection of updates to the shared database that is logically processed at one time.

user interface
Those components of a software system that specify the presentation of application

information to, and interaction with, the end user.

view controller
Mechanism for defining control flow and existence of interaction objects in dialogues.

view controller instance
An instantiation of a view controller template that is bound to specific application data and

interaction objects.

view controller template
A view controller specification.

visible
A data item is said to be visible if the identifier for that data item can be associated with the

value.

white space characters
Characters that are used to separate adjacent tokens or format Slang dialogue text. These

characters include: blank (space), end of line, vertical tab, form feed, horizontal tab, and

comments.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 105

Glossary of Terms 0

0

0

0

0

0

0

0

0

0

106 Serpent Slang Reference Manual (CMUISEI-9 1 -UG-5)

0

Slang BNF Grammar

Appendix B Slang BNF

Grammar
This appendix defines the BNF grammar for Slang. The following conventions are used in
the specification:

Uppercase letters are used to indicate terminals, as does anything enclosed in single quotes.
Uppercase letters are used for reserved words, and singe quotes are reserved for
punctuation literals.

" Lowercase letters are used to indicate a non-terminal (rule).

" Spaces between items in a rle indicate that they are separate, lexically different
terms. A carriage return, line feed, or tab between two items in a rule has the
same meaning as a space (except for reserved words).

• A vertical bar (I) separates choices, one of which must be used.

* Items enclosed in square brackets ([]) are optional.

• Items enclosed in curly brackets ({ }) may be executed any number of times,
including zero.

" Keywords are in boldface type.

Note: Reserved words consisting of two words can have white space between the words.

Slang_program ::=

prologue {externals} componentlist {vc}

prologue ::=

<ill file contents> (Note: <ill file contents>
are handled by the C preprocessor) 'I II'

externals ::=

EXTERNALS (external_typo function name
• [parm-list] I' eos}

external_type

BOOLEAN

I BUFFER
I ID
I INTEGER
I REAL
I STRING

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 107

Slang BNF Grammar

1 VOID

parmlist ::=

{parm ",') parm

parm

BOOLEAN

IBUFFER
lID
1INTEGER
IREAL
ISTRING

vc

VC ':' vc name

creation condition
component-list
{vc}
END VC vc name

component_list ::=

[variables)

[objects]
[actions on create]
[actions on destroy)

creation condition ::=

CREATION CONDITION ':' boolean condition

variables ::=

VARIABLES ':" (variable-declaration}

variable-declaration ::=

variable-name ':' v choice

vvchoice :-=

code_snippet
I [expression] eos

objects ::=0

OBJECTS ':' object_declaration
(object_declaration}

object_declaration ::=

object_name ':' objecttype_name '{
[ATTRIBUTES ':' {attributevalue})]

[METHODS ':' (methodhandler})] '

attribute-value ::=

attribute name ':' av choice

108 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang BNF Grammar

av choice

codesnippet
I expression eos

method-handler

method name ':' code_snippet

actions on create ::=

ON CREATE ':' [code_snippet]

actions on destroy

ON DESTROY ':' [code_snippet]

code-snippet ::=

{' [statements] ' }" [eos]

statements ::=

statement eos (statement eos}

statement ::=

conditional statement

I assignmentstatement
I imperativestatement
loop_statement

conditional statement ::=

IF boolean condition
THEN statements
(ELSIF boolean condition THEN statements}
[ELSE statements]

END IF

assignment statement

qualifiedname ':=' expression

imperativestatement

function-call

loop-statement :-

WHILE boolean condition [DO]
statements
END WHILE

boolean condition
'(' expression ')"

expression ::=

[expression logical_operator]
booleanexpression

Serpem: Slang Reference Manual (CMUISEI-91-UG-5) 109

Slang BNF Grammar

boolean expression

[booleanexpression equality_operator]
relational_expression

relational expression

[relationalexpression relationaloperator]
arithmeticexpression

arithmeticexpression ::=

[arithmetic-expression addition-operator] term

term ::=

[term multiplication operator]factor

factor ::=

[factor '**'] signed id 0

signedid ::=

unary_operator] id

id

qualified name
I function-call
I '(' expression ')'

I constant

qualified-name

name { '.' name } 0

function call

function-name ' [expressions 2 ')"

expressions ::=

expression { '," expression I

logicaloperator

AND

I ORI o' •

equality-operator

relationaloperator :

110 Serpem: Slang Reference Manual (CMUISEI-91-UG-5)

Slang BNF Grammar

additionoperator

multiplication_operator

'I,

unaryoperator

NOT

constant

integer_constant
real-constant
boolean constant
string_constant
UNDEFINED
NULL
SELF

integerconstant

digit {digit}

real constant ::=

digit {digit) '." {digit}
I '.'digit (digit)

boolean constant

TRUE
I FALSE

stringconstant

I I ' <any valid ASCII text> ' ff

function name ::= name

name ::=

alphabeticcharacter or underscore
[{alpha or digitor underscore)
alpha ordigit (alphaordigit}]

eos

comment
'/*' <any valid ASCII text> "*/"

Note: comments are handled by the C
preprocessor and may occur anywhere in a Slang
program

Serpem: Slang Reference Manual (CMU/SEI-91-UG-5) 111

Slang BNF Grammar

0

0

0

S

S

0

0

112 Serpent: Slang Reference Manual (CMU/SEI-9 1-UG-5)

S

Runtime Conversions

Appendix C Runtime

Conversions

Each of the following tables defines the type results and conversions based on the types
(and values) for a specified class of runtime operations. Each table defines the type
coercions that are legal and the results of the coercions. Each shared data component and

attribute has a type declared at specification time. Each variable value has a type determined
at runtime. The first table gives the type of the result when a binary arithmetic operation (+,

-*, /, **) is performed.

C.1 Binary Arithmetic
argument 2: boolean integer real string id buffer undefined

argument 1
boolean (4) (4) (4) (4) (4) (4) (4)
integer (4) integer (3) (1) (4) (4) undefined
real (4) (3) real (2) (4) (4) undefined

string (4) (1) (2) (5) (4) (4) undefined
id (4) (4) (4) (4) (4) (4) (4)
buffer (4) (4) (4) (4) (4) (4) (4)
undefined (4) undefined undefined undefined (4) (4) undefined

Table 12-1 Binary Arithmetic

The preceding is valid for all binary arithmetic operators (+, -, *,/, **) except for division,
which has the following exceptions:

" Dividing by zero results in undefined.

" An integer divided by an integer has a real result.

Notes:

1. If the string operand can be converted to integer, do the conversion and proceed
with the operation. If the string operand cannot be converted to integer, try to
convert it to real. If it can be converted to real, then convert the integer
argument to real and the result is real. Otherwise, it is a runtime error.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 113

Runtime Conversions

2. If the string operand can be converted to real, do the conversion and proceed
with the operation. If the string operand cannot be converted to real, it is a
runtime error.

3. Convert the integer operand to real and proceed with the operation.

4. Runtime error.

5. If both string operands can be converted to integer, convert them and then

perform the operation. If neither string operand can be converted to integer, try
converting to real. If neither can be converted to real, it is a runtime error.

C.2 Relational Operations

The following table gives the type of the comparison when a relational operation (>,<) is
performed.

argument 2 boolean integer real string id buffer undefined
argument 1
boolean (3) (3) (3) (3) (3) (3) (3)
integer integer real (1) (3) (3) undefined
real real (2) (3) (3) undefined
string (5) (3) (3) undefined
id (3) (3) (3)
buffer (3) (3)
undefined undefined

Table 12-2 Relational Operations

1. If the string operand can be converted to integer, do the conversion and proceed
with the operation. If the string operand cannot be converted to integer, try to
convert it to real. If it can be converted to real, then convert the integer
argument to real and the comparison is real. Otherwise, it is a run time error.

2. If the string operand can be converted to real, do the conversion and proceed

with the operation. If the string operand cannot be converted to real, it is a
runtime error.

3. Runtime error.

4. If both string operands can be converted to integer, convert them and then
perform the operation. If both string operands cannot be converted to integer,
try converting them to real. If both cannot be converted to real, it is a runtime

error.

114 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Runtime Conversions

C.3 Assignment Operations

The following table gives the results of assigning a value to either shared data or an object
attribute.

To boolean integer real string id buffer
From
boolean valid (4) (5) (8) invalid valid
integer (6) valid valid valid invalid valid
rcal (7) (1) valid valid invalid valid

string (8) (2) (3) valid invalid valid
id invalid integer invalid invalid valid valid
buffer (9) (9) (9) (9) (9) valid
undefined valid valid valid valid valid valid

Table 12-3 Assignment Operations

Note: The following conversions only occur with shared data.

1. Convert the real operand to integer by truncating the value.

2. Valid if the string operand can b" cnvered to integcr; otherwise, it is a
runtime error.

3. If the string operand can be converted to real, do the conversion and then

continue with the operation. If the string operand cannot be converted to real,
it is a runtime error.

4. Boolean is converted to integer value 1 if true and 0 if false.

5. Boolean is converted to real value 1.0 if true and 0.0 if false.

6. An integer can be converted to a boolean if the value of the integer is 0

(converted to false) or 1 (converted tn true). Any other value results in a

runtime error.

7. A real can be converted to a boolean if the value of the real is 0.0 (converted
to false) or 1.0 (converted to true). Any other value results in a run time error.

8. True is converted to the string "true," false is converted to the string "false."
The reverse conversions occur also (the string values are case sensitive). Any

other values result in a runtime error.

9. If the type of the buffer is a Serpent-defined type and the conversion is defined

for that type, then the conversion is done; otherwise it is a runtime error.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 115

Runtime Conversions

C.4 Unary Arithmetic Operations

boolean (2)

integer integer
real real

string (1)
record (2)

id (2)

buffer (2)
undefined undefined

1. If the string operand can be converted to integer or real, do the conversion and 0

proceed with the operation. If the string operand cannot be converted to integer
or real, it is a runtime error.

2. Runtime error.

Table 12-4 Unary Arithmetic Operations

C.5 Equality Operations

The following table gives the type of comparison when applying the equality operator.

boolean integer real string id buffer undefined
boolean boolean (8) (8) (8) (4) (9) (5)
integer integer (3) (1) (4) (9) (5)
real real (2) (4) (9) (5)
string string (4) (9) (5)
id ID (9) (5)
buffer buffer (5)
undefined TRUE

Table 12.5 Equality Operations

1. If the string operand can be converted to integer, do the conversion and proceed
with the operation. If the string operand cannot be converted to integer, the
operands are considered unequal.

2. If the string operand can be converted to real, do the conversion and proceed
with the operation. If the string operand cannot be converted to real, the

operands are considered unequal.

116 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Runtime Conversions

3. Convert the integer operand to real and proceed with the operation.

4. Runtime error.

5. A variable of undefined type is equal to a shared data component of undefined

value, regardless of the type of the shared data component.

6. A buffer is equal to another type if the buffer can be converted to that type and

the values are equal.

7. A boolean can be compared to an integer or real value if the value can be

converted to boolean.

8. If the type of the buffer is one of the Serpent types, the comparisons are done

using the Serpent type contained in the buffer. If the buffer type is not a Serpent

type, the result is not equal.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 117

Runtixne Conversions 0

S

0

S

9

S

S

S

S

118 Serpent. Slang Reference Manual (CMU/SEI-91-UG-5)

S

Data Access Routines

Appendix D Data Access

Routines
The data access routines provide a means of accessing and modifying view controllers,
variables, and objects within a Slang dialogue. The routines provide access to data items

for those portions of the dialogue that are not within scope of the data item. The following
is a list and short description of these routines. A more complete description immediately
follows:

getbound sd instance Gets the ID of the shared data element
bound to a given view controller.

getname Gets the symbolic name of a view
controller, object, or variable that has the
given ID.

get_object Gets the ID of a named object associated
with a view controller instance.

get_parentvc Gets the I) of the parent view controller

of the specified view controller or object.
getvariable value Gets the value of a specified variable.
get_vc Returns the ID of the named view

controller created for a given shared data

element.
putvariable value ,, ! -iable.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 119

Data Access Routines, get bound sd instance

Function

getbound_sd instance

Description The get_bound sd instance function gets the ID of the shared

data instance bound to the specified view controller. The view

controller is specified through its ID.

Syntax function getbound sd instance(vc id);

Parameters vc id The ID of the view controller.
S

Returns The ID of the shared data instance.

1

t20 Serpent. Slang Reference Manual (CMU/SEI-9 I-UG-S)

Data Access Routines, getvariable value

Function

getvariablevalue

Description The cet variable value function gets the value for a specified

variable within a view controller instance.

Syntax function get variablevalue (vcid , name);

Parameters vc id The ID of the view controller instance in
which the variable lives.

name The name of the variable.

Returns The value of the specified variable.

Serpent Slang Reference Manual (CMUISEI-91-UG-5) 121

Data Access Routines, get_name

Function

get-name

Description The getname function gets me name of the specified data item.

Syntax function get_name (itemid);

Parameters item id The ID of the data item whose name is to be

retrieved. The data item can be either a view

controller, an object, or a variable.

Returns The symbolic name of the item whose IM was passed.

0

0

122 Serpent. Slang Reference Manual (CMU/SEI-9 I-UG-5)

0

Data Access Routines, getobject

Function

getobject

Description The getobject function returns the ID of object instance created

for a specified view controller instance.

Syntax function getobject (vcid , objectname);

Parameters vc id The ID of the view controller instance.

objectname The name of the object as a string.

Returns The D:) of the object instance.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 123

Data Access Routines, getparentvc

Function

get_parentvc

Description The getj!arentvc function gets the ID of the parent view

controller for the specified view controller or object.

Syntax function getparentvc (vc or objectid);

Parameters vc or object_id The ID of the view controller or object.

Returns The ID of the parent view controller. If the argument is the ID of an
object instance, the function returns the ID of the surrounding view
controller instance. If the argument is the ID of a view controller
instance, the function returns the ID of the parent view controller
instance.

Note:if the argument is the ID of the top level view controller, the
system aborts.

124 Serpent. Slang Reference Manual (CMU/SEI-91-UG-5)

Data Access Routines, put variable value

PROCEDURE

putvariablevalue

Description The put_variable-value procedure is used to assign a value to a
specified variable.

Syntax procedure putvariablevalue (vc id , name , value);

Parameters vc-id The ID of the view controller instance of the

specified variable.

name The name of the variable.

value The value to be assigned to the variable.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 125

Data Access Routines, get_vc

Function

getvc

Description The get_vc function gets the ID of view controller instance bound to

a specified shared data element.

Syntax function get vc (sd id , vctemplatename)

Parameters sd id ID of the shared data element.

vctemplatename Name of the view controller template.

Retui ns The ID of the view controller instance.

126 Serpent. Slang Reference Manual (CMU/SEI-91-UG-5)

Shared Data Routines

Appendix E Shared Data
Routines

Shared data routines are used to create, destroy, and manipulate shared data elements from
within a Slang dialogue. The following is a list and short description of these routines. A
more complete description immediately follows:

create sd instance Creates a shared data instance.

destroysd instance Destroys a shared data instance.

get sd value Gets the value of a component of a shared data element
instance.

put sd value Puts a value into a component of a shared data element
instance.

Serpen: Slang Reference Manual (CMU/SEI-91-UG-5) 127

Shared Data Routines, create sd instance

Function

create sd instance

Description The create sd instance routine creates an instance for the

specified shared data element and returns a unique ID.

Syntax function create sd instance (elementname , 0
sdd mailbox);

Parameters element-name The name of the shared data element as a

string.

sdd mailbox The name of the mailbox for the shared data
definition file in which the element is defined.

This name is constructed from the name of the
shared data definition file by capitalizing the
prefix of the file and adding "_BOX" (for
example, app.sdd uses a mailbox named
APP_BOX).

Returns The ID of the newly created shared data instance.

128 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Shared Data Routines, destroysd instance

Procedure

destroy sd instance

Description The destroysd instance routine destroys the specified shared

data instance in the shared database.

Syntax procedure destroysd instance (shared data id);

Parameters shared data id The ID of the shared data instance to be

destroyed.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 129

Shared Data Routines, getsd value

Function

getsdvalue

Description The get sd value function gets the value of a component of a

specified shared data element.

Syntax function get_shareddatavalue (sdid,

component-name) ;

Parameters sd id The E) of the shared data element.

componentname The name of a component within the shared
data element as a string.

Returns The value of the specified shared data element

130 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Shared Data Routines, putsd value

Procedure

put_sd_value

Description The put sd value procedure puts the specified value into a
component oF the specified shared data item.

Syntax putshareddatavalue (sd_id , compo:-ent name

value);

Parameters sd id The I) of the shared data element instance.

component-name The name of a component within the shared
data element.

value Value to be assigned to shared data

component.

Serpent. Slang Reference Manual (CMU/SEI-91-UG-5) 131

Shared Data Routines 0

0

0

0

0

0

0

0

S

Serpent: Slang Reference Manual (CMU/SEI-91-UG-S) 132

S

Utility Routines

Appendix F Utility Routines
Utilit-, routinxeq serve special purposes. They are used as functions within a dialogue but are
not exclusively for shared data or for data access.

exit Terminates the dialogue manager and sends a
SIGINT signal to all the taps that were started by the

current invocation of the Serpent command.

id exists Used to test for the existence of either a shared data
element, a view controller, a variable, or an object.

new Used in a view controller template creation condition
to indicate that an instance of shared data should be

considered for causing a new instance of that view
controller.

recording_on Turns on the Serpent transaction recording function.

recording_off Turns off the Serpent transaction recording function.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 133

Utility Routines, exit

Function

exit

Description The exit function terminates execution of a dialogue and any related
applications and I/0 technologies.

Syntax procedure exit (;

Parameters None.

134 Serpent: Slang Reference Manual (CMfU/SEI-91-UG-5)

Utility Routines, id exists

Function

id exists

Description The id exists function tests whether an ID refers to a valid shared

data item, view controller, variable, or object.

Syntax function id exists (id

Parameters id The ID to test.

Returns TRUE if the ID specifies a valid shared data item,
variable, view controller instance, or object;

FALSE otherwise.

Example The following Slang program shows how one might use idexists.
The shared data definition file is appended to the end of the program.

#include "dn. ill"
#include "saw.ill"

III
VARIABLES:
some id;
is there : false;
OBJECTS:
button : command-widget
(ATTRIBUTES:
label text :
(IF (is there) THEN
label text := "'THERE";
ELSE
label rtext := "NOT THERE";
END IF;
I
METHODS:
notify:
IF (id exists (some id)) THEN
destroy sd instance (someid);
is there := false;
ELSE
some id := create sd instance ("somesdd",

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 135

Utility Routines, id exists

"DM Box");
is there true;
END IF; }S

shared data definition file
<<test>>
some sd shared data
some-sdd record
some component : integer;
end record;
end shared data;

136 Serpent-Slang R -erence Manual (CMU/SEI-91-UG-5)

Utility Routines, new

Function

new

Description The new function determines the existence of an unbound shared data

element in the shared database. The new function can only be used as

part of the creation condition for view controllers.

Syntax function new (shared data item)

Parameters shared dataitem The name of a shared data element as a string.

Returns TRUE when an unbound shared data element of the

appropriate name is found Fal se when either

no unbound shared data element is found or

the currently bound instance is deleted.

Serpent. Slang Reference Manual (CMU/SEI-91-UG-5) 137

Utility Routines, recording_on

Procedure

recording_on

Description The recording_on procedure turns on the Serpent transaction
recording function.

Syntax procedure recordingon (recording_file,

headermessage);

Parameters recording-file The name of a UNIX file to which the
transactions are written.

headermessage An identification string included in the
recording file.

138 Serpent: Slang Reference Manual (CMU/SEI-9 1-UG-5)

Utility Routines, recording_off

Procedure

recording_off

Description The recordingoff procedure turns off the Serpent transaction
recording function.

Syntax procedure recording_off);

Parameters none

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 139

0

0

0

0

0

0

0

0

0

0

140 Serpent: Slang Reference Manual (CMU/SEI-9 1 -UG-5)

0

Athena Widget Set

Appendix G Athena Widget

Set

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 141

Athena Widget Set0

142 Serpeni: Slang Reference Manual (CMU/SEI-91-UG-S)

Athena Widget Set, XawBboard

XawBboard

Serpent Name XawBboard

includefile: Xl 1/Xaw/Form.h
widget-type: widget

class: formWidgetClass

Description The XawBboard widget is a form widget that does not perform
geometry management for its children. (The XawBboard widget
should be used instead of the form widget when creating a background
form to parent other widgets.)

Attributes
Serpent

Name x E Default

after Widget

allowUserMove Boolean false

allowUserResize Boolean false

toBottom bottom

fc- - focus

met hod MethodName

parent Widget

selectedX Position 0

selectedY Position 0

maintainSize Boolean

managedWhenCreated Boolean true

toTop top

widget int

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 143

Athena Widget Set, XawBboard 0

Form Widget Resource Set
Name X yeDefault

accelerators Accelerators 6

ancestorSensitive Boolean

background Pixel white

backgroundPixanap Pixmnap

borderColor Pixel black 0
borderPi.inap Pixmnap

borderWidth Dimension 1

children WidgetList

colorinap Colormnap

defaultDistance int

depth int

destroyCaliback CallbackList

height Dimension

mappedWhenManaged Boolean true

nuxnChildren Cardinal

screen Screen

sensitive Boolean true 0
translations Translations: Shift<BtnlDown>,<BtnlUp>: picko

BnlDown>,<BtnlUp>: select()
ShifttzBtn2Down>,<Btn2Motion>: resize()
Shift<Btm2Down>,ezBm2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btrn2Down>,<Btn2Motion>,<Btn2Up>: resize()
CtrlkBtnlDown>,<BtmlUp>: top()
Ctrl<Btn2Down>,<]3tn2Up>: bottom()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btm3Down>,,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveo

width Dimension

X Position

y Position

Constraint Resource Set
Name XTMDefault

bottom unsigned char 0

frornHoriz Widgret NULL

144 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

0

Athena Widget Set, XawBboard

romVert Widget NULL

horizDistance int 0

vertDistance int 0

left unsignedchar 2

resizable Boolean false

right unsignedchar 2

top unsignedchar 0

Methods

Name Parameters Description

move x, y, horizDistance, This method allows the user to move the widget with
vertDistance the mouse and sends the widget's new x and y location to

the dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse, and sends the widget's x and y location and new
width and height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mousc, and sends the location of that point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

select selectedX, selectedY This method allows the user to select a point on the widget
with the mouse, and sends the location of the point to the
dialogue.

Serpent: Slang Reference Manuol (CM1J/SFI-91 -UG-5) 145

Athena Widget Set, XawBox

XawBox
0

Serpent Name XawBox

include-file: Xl 1/XawiBox.h

class: boxWidgetClass
widget-type: widget

Description The XawBox widget provides geometry management of arbitrary

widgets in a box of a specified dimension. The children are rearranged

when resizing events occur either on the XawBox or on one of its

children, or when its children are managed or unmanaged. The
XawBox widget always attempts to pack its children as tightly as
possible within the geometry allowed by its parent

Attributes

Serpent

Name X Typte Default

after Widget

all2owUserMove Boolean false

allowUserResize Boolean false

toBottom bottom

focus focus
managedWhenCreated Boolean true

met hod MethodName

parent Widget NULL

selectedX Position 0

selectedY Position 0

toTop top

widget int

146 Serpent" Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawBox

Box Widget Resource Set

Name XTpgDefault

accelerators Accelerators

ancestorSensitive Boolean

anbackground Pixel white

backgroundPixanap Pixmap

borderCc'lor Pixel black

borderPiaap Pixmap

borderwidth Dimension 1

children WidgetList

colormap Colormap

depth int

destroyCaliback CallbackList

height Dimension

hSpace Dimension

mappedWhenl~anaged Boolean true

numChildren Cardinal

orientation String

screen Screen

sensitive Boolean true

translations Translations: Shift<Btnl Down>,<Btnl Up>: picko
Shift<Btri2Down>,<Btn12Motion>: resize()
Shift<Btm~lown>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Bmn3Down>,<Btn3Motion>: moveo
Shift<Bmn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Bt3Down>,<Bm3Motion>,<Btn3Up>: moveo

width Dimension

X Position

y Position

Constraint Resource Set

Name X Type Default

bottom unsigned-char 0

fromlioriz Widget NULL

fromVert Widget NULL

Serpent: Slang Re!" rence Manuial (CMU/SEI-91-UG-5) 147

Athena Widget Set, XawBox

horizDistance int 0

vertDistance int 0

left unsigned-char 2

resizable Boolean false

right unsigned-char 2

top unsigned-char 0

Methods

Name Parameters Description

move x, y, horizDistance, This method allows the user to move the widget with the
vertDistance mouse and sends the widget's new x and y location to the

dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

148 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawCommand

XawCominand

Serpent Name XawCommand

includefile: X 11/Xaw/Command.h
class: commandWidgetClass
widget-type: widget

Description The XawCommand widget is an area, often rectangular, that contains a

text label or bitmap image. This area, which is selectable, is often
referred to as a button. When the pointer cursor is on a button, it

becomes highlighted by drawing a rectangle around its perimeter. This
highlighting indicates that the button is ready for selecti"- When
pointer button 1 is pressed, the XawCommand widget indicates its
selection by reversing its foreground and background colors. When the
button is released, the XawCommand widget's notify action will be
invoked. If the pointer is moved out of the widget before the button is
teleased, the widget reverts to its normal foreground and background

colors, and releasing the button has no effect. This behavior allows the
user to cancel an action.

Attributes
Serpent

Name X Type Default

after Widget

allowUserMove Boolean false

allowUserResize Boolean false

toBottom bottom

managedWhenCreated Boolean tue

method MethodName

parent Wdget NULL

toTop top

selectedX Position 0

Serpent. Slang Reference Manual (CMU/SEI-91-UG-5) 149

Athena Widget Set, XawCommand

selectedY Position 0

widget int

Command Widget Resource Set
Name X Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel white

backgroundPiaap Pixmap

bitmap Pixmap

borderColor Pixel black

borderPizanap Pixmap

borderWidth Dimension 1

callback CallbackList Sixcallback

colormap Colormap

cornerIcundPercent Dimension

cursor Cursor

depth iril

destroyCaliback CallbackList

font XFontStruct 6x13

foreground Pixel black

height Dimension

highlightThickness Dimension

insensitiveBorder Pixmap

internalHeight Dimension 2

internalWidth Dimension 4

justify unsigned-char 1

lacel String

mappedWhenManaged Boolean true

resize Boolean

screen Screen

sensitive Boolean true

shapeStyle unsignedchar

trar.slations Translations: Shift<BtnlDown>,<BtnlUp>: picko
Shift<Btn2Down>,<Btn2Motion>: resize()

150 Serpent Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, xawCommand

Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0
Shift<B m2Down>,<B tn2Motion>,<Btn2Up>: resizeO
Shift<Btm3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveo
Ctr<Bml Down>,<BtnlUp>: topo
CtrI<Btn2Down>,<Btn2Up>: bottomo
<BtnlDown>: set()
<BtnlUp>: notify 0 unset0
<EnterWindow>: highlight()
<LeaveWindow>: uniighlight0

width Dimension

x Position

y Position

Constraint Resource Set
Name X TY1 Default

bottom unsigned-char 0

fromHoriz Widget NULL

fromVert Widget NULL

horizDistance lit 0

vertDistance int 0

left unsignedchar 2

resizabie Boolean false

right unsigned_char 2

top unsigned_char 0

Methods
Name Parameters Description

move x, y, horizDistance, This method allows the user to move the widget with the
vertDistance mouse and sends the widget's new x and y location to the

dialogue.

resize x, y, width, height This methed allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

top This method is sent to the dialogue when the widget is
raised.

Serpent: Slarn Reference Manual (CMU/SEI-91-UG-5) 151

Athena Widget Set, XawCommand

bottom This method is sent to the dialogue when the widget is
lowered.

notify This method is sent to the dialogue in response to a user
event (typically a BtnlDown).

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BmlDown).

152 Serpent Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawDialog

XawDialog

Serpent Name XawDialog

includefile: Xl 1/Xaw/Dialog.h

class: dialogWidgetClass

widget-type: widget

Description An XawDialog widget, which is simply a special case of the Form

widget, provides a convenient way to create a preconfigured form. The

typical xawDialog widget contains three areas. The first line contains

a description of the function of the XawDialog widget (for example,

the string Filename); the second line contains an area into which the

user types input; the third line contains buttons that allow the user to

confirm or cancel the XawDialog input.

Attributes

Serpent

Name X T1e Default

allowUserMove Boolean false

allowUserResize Boolean false

toBottom bottom

managedWhenCreated Boolean true

met hod MethodName

parent Widget

toTcp top

selectedX Position 0

selectedY Position 0

widget int

Serpent- Slang Reference Manual (CMU/SEI-91-UG-5) 153

Athena Widget Set, XawDialog 0

Formn Widget Resource Set
Namne X Type

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPi~aap Pixrnap

borderColor Pixel 0

borderPi.inap Pixmap

borderWidth Dimension

children WidgetList

colorinap Colormap

defaultDistance int

depth int

destroyCallback CallbackList

height Dimension

icon Pixmnap

label String

rappedWheniManaged Boolean

nuxnChildren Cardinal

screen Screen

sensitive Boolean

translations Translations: Shift<BtnlDown>,<BtnlUp>: pick()
Shift<Btn.2Down>,<Btn.2Motion>: resize() 0
Shift<Btm2Down>,<B3tn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Bma2Up>: resize()
CtrlkBtnlDown>,<BtnlUp>: topo
CtrlkBtn2Down>,<Bm2Up>: bottom()
Shift<Bt3Down>,<Btn3Moion>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo 0
Shift<Btn3Down>.<Btn3Motion>,<Btn3Up>: move()

value String

width Dimension

X Position

y Position

154 Serpent Slang Reference Manual (CMU/SEI-91-UG-5)

Oi

Athena Widget Set, XawDialog

Constraint Resource Set

Name X Typg Default

bottom unsigned-char 0

fromnHoriz Widget NULL

fromVert Widget NULL

horizDistance ilt 0

vertDistance lit 0

left unsigned-char 2

resizable Boolean false

right unsigned-char 2

top unsigned-char 0

Methods
Name Parameters Description

move x, y, horizDistance, This method allows the user to move the widget with the
vertDistance mouse and sends the widget's new x and y location to the

dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BmlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 155

Athena Widget Set, XawForm S

XawForm

Serpent Name XawForm

0

includefile: XI l/Xaw/Form.h

class: formWidgetClass
widget-type: widget

Description The xawForm widget can contain an arbitrary number of children, or

subwidgets. The XawForm provides geometry management for its

children, allowing individual control of the position of each child. Any

combination of children can be added to an XawForm. The initial

positions of the children may be computed relative to the positions of

other children. When the XawForm is resized, it computes new

positions and sizes for its children. This computation is based upon

information provided when a child is added to the XawForm.

Attributes

Serpent

Name X Type Default

after Widget

allowUserMove Boolean false

allowUserResize Boolean false

toBottom bottom

focus focus

maintainSize Boolean true

managedWhenCreated Boolean true

met hod MethodName

parent Widget NULL

s'electedX Position 0

selectedY Position 0

toTop top

1

156 Serpent" Slang Reference Manual (CMU/SEI-9 1-UG-5)

Athena Widget Set, XawForm

widget mnt

Form Widget Resource Set
Name X TypM Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel white

backgroundPixanap Pixniap

borderColor Pixel black

borderPi.onap Pixmap

borderWidth Dimension 1

children Widgedist

colormap Colormap

children WidgetList

colormap Colormlap

depth int

destroyCailback CallbackList

height Dimension

rnappedwhenlanaged Boolean true

nurnChildren Cardinal

sensitive Boolean true

translations Translations: Shift<BtnlDown>,<Btn1Up>: pick()
Shift<Btn2Down>,<Btn2Motion>: resizeO
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Bt2Down>,<Bmn2Motion>,<Btn2Up>: resize()
CtI<BtnlDown>,<BtnIUp>: topo
Ctrl<Btn2Down>,<Btn2Up>: bottom()
Shift<Bmn3Down>,<Btn3Motion>: moveo
Shift<Btm3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Bm3Down>,<Bmn3Motion>,<Btn3Up>: move()
<BtnIDown>,<BtnlUp>: select()

width Dimension

X Position

Y- Position

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 157

Athena Widget Set, XawForm

Constraint Resource Set
Name X Default

bottom unsignedchar 0

fromHoriz Widget NULL

fromVert Widget NULL

horizDistance int 0

vertDistance int 0 0
left unsignedchar 2

resizable Boolean false

right unsignedchar 2

top unsignedchar 0

Methods

Name Parameters Description

move x, y, horizDistance, This method allows the user to move the widget with
vertDistance the mouse and sends the widget's new x and y location to

the dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

1

158 Serpent" Slang Re'ference Manual (CMU/SEI-91-UG-5)

0

Athena Widget Set, XawLabel

XawLabel

Serpent Name Xawlabel

includefile: X 11/Xaw/Label.h

class: labelWidgetClass

widget- type: widget

Description An XawLabel widget is a text string or bitmap displayed within a

rectangular region of the screen. The label may contain multiple lines

of Latinl characters. The XawLabel widget will allow its string to be
left, right, or center justified. Normally, this widget can be neither

selected nor directly edited by the user. It is intended for use as an

output device only.

Attributes

Serpent

Name X Typ Default

after Widget

allowUserMove Boolean false

allowUserResize Boolean false

toBottom bottom

managedWhenCreated Boolean true

method MethodName

parent Widget NULL

toTop top

selectedX Position 0

selectedY Position 0

widget int

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 159

Athena Widget Set, XawLabel 0

Label Widget Resource Set
Name X Typg Default

accelerators Accelerators 0

ancestorSensitive Boolean

background Pixel white

backgroundPi.-anap Pixinap

bitmap Pixmnap 0

borderColor Pixel black

borderPi~cnap Pixmap

borderWidth Dimension1

colormap Colormap

cursor Cursor

depth int

destroyCaliback CallbackList

font XFontStruct 6x13

foreground Pixel black

height Dimension

ir.sensitiveBorder Pixmap

internal~eight Dimension 20

internalWidth Dimension 4

justify unsigned-char 1

label String

mappedWhenManaged Boolean true

resize Boolean true

screen Screen

sensitive Boolean true

translations Translations: Shift<Btnl Down>,<BtnlUp>: picko
Shift<Btn12Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btrn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
CtrkBmlDown>,<BtnlUp>: topo
CtrlkBtri2Down>,<Btn2Up>: bottomno
Shift<Bn3Down>,<Bt3Motion>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btm3Down>,<Btn3Motion>,<Btn3Up>: moveo

width Dimension

X Position

160 Serpent. Slang Reference Manual (CMU/SEI-91 -UG-5)

Athena Widget Set, XawLabel

y Position

Constraint Resource Set
Name X Type Default

bottom unsigned-Char 0

fromHoriz Widget NULL

fromVert Widget NULL

horizDistance int 0

vertDistance int 0

left unsignedchar 2

resizable Boolean false

right type unsignedchar 2

top unsignedchar 0

Methods
Name Parameters Description

move x, y, horizDistance, This method allows the user to move the widget with
vertDistance the mouse and sends the widget's new x and y location to

the dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse, and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 161

Athena Widget Set, XawMenuButton

XawMenuButton

Serpent Name XawMenuButton
0

includefile: Xl 1/Xaw/MenuButton.h

class: menuButtonWidgetClass
widgettype: widget

Description The XawenuButton widget is a (typically) rectangular area that
contains a text label or bitmap image. When the pointer cursor is on
the button, the button becomes highlighted by drawing a rectangle
around its perimeter. Highlighting means that the button is ready for
selection. Wi- selected, the XawMenuButton will pop up the menu
that has been named in the menuName resource.

Attributes
Serpent

Name X TYpe Default

after Widget

allowUserMove Boolean false

allowUserResize Boolean false

toBottom bottom

managedWhenCreated Boolean true

met hod MethodName

parent Widget NULL

selectedX Position 0

selectedY Position 0

toTop top

widget Widget

162 Serpent Slang Reference Ma, '(CMU/SEI-91-UG-5)

Athena Widget Set, xawmenuButtori

Menu Button Resource Set
Namne X Tyle Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel white

backgroundPfizap Pixmap

bitmap Pixmap

borderColor Pixel black

borderP i.miap Pixmap

borderWidth Dimension1

callback CallbackList Six callback

colornap Colormap

cornerRoundPercent Dimension

cursor Cursor

depth int

destroyCallback CallbackList

f ont XFontStruct 6x13

foreground Pixel black

height Dimension

highiightThickness Dimension

insensitiveBorder Pixmap

internalHeiorht Dimension 2

internalWidth Dimension 4

justify unsigned-char 1

Label String

mappedWhenLManaaed Boolean true

menuName String

resize Boolean

screen Screen

sensitive Boolean true

shapeStyle unsigned-char

translations Translations: Shift<BnlDown>,<BtnlUp>: picko
Shif<Bm2Down>,<B tn2Motion>: resizeO
Shift<Bti2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shifte Rtn2Down>,<B tn2Motion>,<Btn2"Up>: resizeO
Shift<Btn3Down>.<Btn3Motion>: moveo

Serpenlt Slang Reference Manual (CMU/SEI-91 -UG-5) 163

Athena Widget Set, XawMenuButton

Shift<B m3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<BtnDown>: resetO notify 0 PopupMenuo
<EnterWindow>: highlight()
<LeaveWindow>: reset()

width Dimension

x Position

y Position

Constraint Resource Set
Name X T pe Default

bottom unsignedchar 0

fromHori z Widget NULL

fromVert Widget NULL

horizDistance int 0

vertDistance ilt 0

left unsignedchar 2

resizable Boolean false

right unsignedchar 2

top unsignedchar 0

Methods

Name Parameters Description

move x, y, horizDistance, This method allows the user to move the widget with the
vertDisttance mouse and sends the widget's new x and y location to the

dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue. 0

rnct i f y This method is sent to the dialogue in response to a user
event (typically a Btn I Down).

tiok selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

164 Serpent Sla, Rje/ren e Manual (C IU/SEI-91-UG-5)

Athena Widget Set, XawMenuShell

XawMenuShell

Serpent Name XawMenuShell

include-file: XI I/ /SimpleMenu.h
class: simple MenuWidgetClass
widget-type: override

Description The XawMenuShell widget is an override shell which acts as a
container for the menu entries. The xawmenuS hell serves as the glue
to bind the individuai menu entries together into a menu.

Attributes
Serpent

Namne X Typt- Default

allowUserl-ove Boolean false

allowUserResize Boolean

method MethodName

parent Widget NULL

widget mnt

Shell

Name X Type

accelerators Translations

ancestorSensitive Boolean

allowShellResize Boolean

background Pixel

back grouid i.L~-nap PLxmap

borderColor Pixel

borderPixmap Pixmap

borcie~idthDimension

Serpent Slang Rtjferenc cManual (CMU/SEI-91 UG-5) 165

Athena Widget Set, xawMenuShell

bottonMargin Dimension

children WidgetList

colormap Colormap

createPopupChildProc Boolean

cursor Cursor

depth int

destroyCallback CallbackList 0

geometry caddrt

height Dimension

label String

labeiClass WidgetClass

mappedWhenl~anaged Boolean

renuOnScreen Boolean

nuxnChildren Cardinal

overrideRedirect Boolean

popdownCallback CallbackList

popup~aliback Callbax;kList

popupOnEntry Widget

rowHeight Dimension

saveUnder Boolean

screen Screen

sensitive Boolean

topMargin Dimension 0

translations Translations: <EnterWindow>: highlight()
<Leave Window>: unhighlight()
<BmnMotion>: highlight()
<BtnUp>: MenuPopdown() notify() unhighlight()
Shift<Btn2Down>,<Btn2Motion>: resize()0
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btnt2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3UD>: moveo
Shift<Bmn3Down>,<Btn3Motion>,<Btn3Up>: nmove()
CtrlBtnl Down>,<Btnl Up>: topo
CtrlkBtn2Down>,<Btn2Up>: bottom()

width Dimension

Position

y Position

166 Serpent Slang Reference Manual (CMUISEI-9 1-UG-5)

Athena Widget Set, XawMenuShell

Constraint Resource Set

Name XLzjg Default

bottom unsigned-char 0

fromHoriz Widget NULL

fromVert Widget NULL

horizDistance ilt 0

vertDistance int 0

left unsigned-char 2

resizable Boolean false

right unsigned-char 2

top unsigned-char 0

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 167

Athena Widget Set, XawPaned

XawPaned

Serpent Name XawPaned

includefile: XI 1/Xaw/Paned.h

class: panedWidgetClass
widget-type: widget

Description The XawPaned widget manages children in a vertically or horizontally

tiled fashion. The user may dynamically resize the pane by using the
grips that appear near the right or bottom edge of the border between
two panes.

Attributes
Serpent

Name X y Default

alowUserMove Boolean false

allowUserResize Boolean false

toBottom bottom

focus focus

managedWhenCreated Boolean true

met hod MethodName

parent Widget

selectedX Position 0 0

selectedY Position 0

toTop top

widget int

Paned Widget Resource Set
Name y Default

accelerators Accelerators

168 Serpent Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawPaned

ancestorSensitive Boolean

background: Pixel

backgroundS i.nap Pixmap

betweenCursor Cursor

borderColor Pixel

borderPiyxnap Pixmap

borderWidth Dimension

children WidgetList

colormap Colormap

cursor Cursor

depth int

destroyCailback CallbackList

gripCursor Cursor

griplndent Position

gripTranslations Translations

height Dimension

horizontalBetweenCursor Cursor

horizontalGrip~ursor Cursor

icon Pixmap

internalBorderColor Pixel

internalBorderWidth Dimension

leftCursor Cursor

2owerCursor Cursor

mappedWhenManagsmd Boolean

numChildren Cardinal

orientation Strin~y

ref igureMode Boolean

rightCursor Cursor

3creen Screen

sensitive Boolean

trans lat ions Translations: Shift<BtnlDown>,<BtnlUp>: pick()
Shift<Bt2Down>,'i3tn2Motion>: resizeO
Shift<Btn2Down>,<Bmn2Motion>,<Leave>,<Btn2Up>: resize()
Sbift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resizeO
Sbift<Btn3Down>,<cBm3Motion>: moveo
Shift<Bmn3Down>,<Btn3Motion>,<Leave>,<Btn3TUp>: moveo
Shift<B tn3Down>,<Btn3Motion>,<Btn3Up>: move()

Serpent: Slang Reference Manu*al (CMU/SEI-91-UG-5) 169

Athena Widget Set, XawPaned

upperCursor Cursor

verticalBetweenCursor Cursor

verticalGripCursor Cursor

width Dimension

x Position

y Position

Constraint Resource Set

Name X Typ

allowResize Boolean

max Dimension

min Dimension

preferredPaneSize Dimension

resizeToPreferred Boolean

showGrip Boolean

skipAdjust Boolean

Constraint Resource Set

Name X Type Default

bottom unsignedchar 0

fromHoriz Widget NULL

fromVert Widget NULL

horizDistance int 0

vertDistance imt 0

left unsignedchar 2

resizable Boolean false

right unsignedchar 2

top unsignedchar 0

Methods

Name Parameter Description

move x, y, horizDistance, This method allows the user to move this widget with the
vertDistance mouse and sends the widget's new x and y location to the

dialogue.

170 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

S

Athena Widget Set, XawPaned

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allowb die user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted

BtnlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 171

Athena Widget Set, XawScreen~b ject0

XawScreenObj ect

Serpent Name XawScreenObject

Description The XawScreenObject widget allows for the detection of screen and

display IDs:
Display size contains height and width
Display type contains color or black & white

Attributes
Serpent

Name XTp

color Boolean

display int

height Dimension

screen Screen

width Dirnension

172 Serpent: Slang Reference Manual (CMUJSEt-9 I-UG-5)

Athena Widget Set, XawScrollbar

XawScrollbar

Serpent Name XawScrollbar

include-file: XI l/Xaw/Scrollbar.h
class: scrollbarWidgetClass
widget-type: widget

Description 'Me XawScrollbar is a rectangular area containing a thumb that,
when moved along one dimension, will cause the scrolling of a region
inside a box widget. The XawScrollbar may be oriented
horizontally or vertically. Each pointer button invokes a specific

action.

Attributes
Serpent

Name X Typ~e Default

allowUserMove Boolean false

allowUserResize Boolean f.- ise

toBottom bottom

managedWhenCreated Boolean true

met hod MethodName

parent Widget NULL

selectedX Position 0

selectedY Position 0

toTop top

widget mnt

Command Widget Resource Set
Name X yp

accelerators Accelerators

ancestorSensitive Boolean

Serpenz: Slang Reference Manual (CMU/SEI-91-UG-S) 173

Athena Widget Set, XawScrollbar 0

background Pixel

backgroundPioap Pixmap

borderColor Pixel 0

borderPianap Pixinap

borderWidth Dimension

colormap Colormap

depth int 0

destroy~allback CallbackList

foreground Pixel

height Dimension

j uxpP roc CallbackList

length Dimension

mappedWhenManaged Booleani

minimumThumb Dimension

orientation unsigned-char 0
screen Screen

scrollDCursor Cursor

scroliNCursor Cursor

scrollLCursor Cursor 0

scrolj Proc CallbackList

scroliRCursor Cursor

scrollUCursor Cursor

3corollVCursor Cursor 0

sensitive Boolean

shown float

thickness Dimension

topOfThumb float

translations Translations: Shift<BtnlDown>,<BtnlUp>: pick()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btm2Down>,<Btn2Motion>,<Leave>,<Bm2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btft2Up>: resize()
Shift<Bm3Down>,<Btn3Motion>: move() 0
Shift<Bmn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveo
Ctrl<BtnlDown>,<BtnlUp>: top()
Ctrl<Btn2Down>,<Btn2Up>: bottom()
<BtnlDown>: StartScroll(Forward)
<Btn2Down>: StartScroll(Continuous) MoveThumb()0

174 Serpent:- Slang Reference Manual (CMd/SEI-91-UG-5)

0

Athena Widget Set, XawScrollbar

NotifyThumb()
<Btn3Down>: StartScroll(Backward)
<Bmn2Motion>: Movelhumb() NotifyThumbo
<BtnUp>: NotifyScroll(Proportional) EndScrolO(

width Dimension

x Position

Y Position

Constraint Resource Set

Name X Type Default

bottom unsigned-Char 0

fromHoriz Widget NULL

fromVert Widget NULL

horizDistance Iit 0

vertDistance lflt 0

left unsigned-char 2

resizable Boolean false

right unsignedchar 2

top unsigned-Char 0

Methods

Namne Paramneters, Description

move x, y, horizDistance, This method allows the user to move the widget with the
vertDistance mouse and sends the widget's new x and y location to the

dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-S) 175

Athena Widget Set, xawSimpleMenu

XawSimpleMenu

Serpent Name XawSiinpleMenu

include-file: Xl l/Xaw/Sme.h
class: smeObjectClass
widget-type: widget

Description The XawSimpleMenu widget is a container for menu entries. The
XawSimpleMenu serves as the glue to bind the individual menu

entries together into a menu.

Attributes
Serpent

Name X Type Default

after Widget0

allowUserMove Boolean false

allowUserResize Boolean false

managedWhenCreated Boolean true

met hod MethodNamne

parent Widget NULL

selectedX Position 0

selectedY Position 0

toBottom bottom

toTop top

widget int

Menu
Name X jypf! Default

ancestorSensitive Boolean

destroyCallback CallbackList

176 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, xawSimpleMenu

height Dimension

sens itive Boolean

translations Translations: Shift<BtnlDown>,<BtnlUp>: picko
Shift<Btn2Down>.<Btn2Motion>: resizeO
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2'-Up>: resizeO
Shift<Btn2'Down> ,<B tn2Motion>,<Btn2)Up>: resize()
Sh~ift<Btn3Down>,<Btn3Motion>: moveo
ShiftvBtn3Dow-n>,<Btni3Mvotion>,<Leave>,<IEi2iUp> muve()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>- moveG
<BtnDown>: reseto notify () PopupMenuo
<EnterWindow>: highlight()
<LeaveWindowA>: reseto

width Dimension

-- Position

y Position

Constraint Resource Set

Namne X Type Default

bottom unsigned char 0

f ron~ior -4z Widget NULL

fromVert Widget NULL

horizDintance int 0

vertDistance int 0

left unsigned-char 2

resizable Boolean false

right unsigned-char 2

top unsignedchar 0

Methods

Name Parameters Description

move x, y, horizDistance This method allows the user to move the widget
vertDistance with the mouse and sends the widget's new x and y

location to the dialogue.

-esize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a BtnlDown).

Serpent- Slang Reference Manual (CMlJ/SEI-9 1-UG-5) 177

Athena Widget Set, XawSimpleMenu 0

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

178 Serpentr Slang Reference Manual (CMU/SEI-91I -UG-5)

Athena Widget Set, XawSimpleMenuBSB

XawSimpleMenuBSB

Serpent Name XawSimpleMenuBSB

includefile: XI I//SmeBSB.h
class: smeBSBObjectClass

widget-type: widget

Description The XawSimpleMenuBSB widget is a container for the menu entries.

It differs from a plain menu widget in that it can contain bitmaps on

both sides of a menu entry.

Attributes
Serpent

Name X Default

after Widget

allowUserMove Boolean false

alowUserResize Boolean false

managedWhenCreated Boolean true

met hod MethodName

parent Widget NULL

selectedX Position 0

selectedY Position 0

toBottom bottom

toTop top

widget Widget

BSB Object

Name X Tyle Default

ancestorSensitive Boolean

callback CallbackList Sixcallback

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 179

Athena Widget Set, XawS impleMenuBSB

destroyCaliback CallbackList

font XFontSu-uct 6x13

foreground Pixel black

height Dimension

justify unsigned-char

label String

leftBitmap Pixinap

leftMargin Dimension 4

rightBitnap Pixinap

rightMargin Dimension 4

sensitivue Boolean

translations T1ranslations: Shift<BtnlDown>,<Btnl Up>: pickO
Shift<Btn2'Down>,<Btn2)Motion>: resizeO
Shift<Btn2Down>,<Btn2Motion>,sLeave>,<Bn2ULp>: rcsize()
Shift<Btni2Down>,<Btn2Motion>,<Btn2Up>: resizeO
Shift<Btn3Down>,<Btn3Motion>: moveo
Shift<Btm3Down>,<Btn3Motion>,sLeave>,<Btn3Up>: moveo
Shift<Bt3Down>,<Btna3Motion>,<Btn3Up>: moveo
<BmnDown>: reseto notify () PopupMenuo
<Enter'*Nindow>: highlight()
<LeaveWindow>: reseto

vertSpace mnt 25

width Dimension

X Position

y Position

Constraint Resource Set
Name X Type Default

bottom unsigned-char 0

f ron*Ho r iz Widget NULL0

fromVert Widget NULL

horizDistance int 0

vertDistance int 0

left unsigned-char 20

resizable Boolean false

right unsigned-char 2

top unsigned-char 0

180 Serpenr. Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawSimpleMenuBSB

Methods

Name Parameters Description

move x, y, horizDistance, This method allows the user to move the widget with the
vertDistance mouse and sends the widget's new x and y location to the

dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a BtnlDown).

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

Serpent Slang Reference Manual (CMU/SEI-91-UG-5) 181

Athena Widget Set, XawSmeLine

XawSmeLine

Serpent Name XawSmeLine

includefile: X1 l/Xaw/SmeLine.h n
class: smeLineObjectClass
widget-type: widget

Description The XawSmeLine widget is an object used to add a horizontal line to

a menu, acting as a menu separator. This object is not selectable.

Attributes

Serpent

Name X Default

after Widget

allowUserMove Boolean false

allowUserResize Boolean false

managedWhenCreated Boolean true

met hod MethodName

parent Widget NULL

selectedX Position 0

selectedY Position 0

toBottom bottom

toTop top

widget nt

SmeLine

Name X Typ Default

destroyCallback CallbackList

Pixel black

height Dimension

182 Serp.n. Slang Reference Manual (CMU/SEI-91-UG-5)

M I ~m••mm•• tmmmmmmm

Athena Widget Set, XawSmeLine

lineWidth Dimension

sensitive Boolean

stipple Pixmap

translations Translations: Shift<BtnlDown>,<BtnlUp>: pick()
Shift<Btn2Down>,<Btn2Motion>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0
Shift<Btm2Down>,<Btn2Motion>,<Btn2Up>: resizeO
Shift<Btm3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<BtnDown>: reseto notify 0 PopupMenu0
<EnterWindow>: highlight()
<LeaveWindow>: reseto

width Dimension

x Position

y Position

Constraint Resource Set

Name X Default

bottom unsignedchar 0

fromHoriz Widget NULL

fromVert Widget NULL

horizDistance int 0

vertDistance mnt 0

left unsigned_char 2

resizable Boolean false

right unsigned-char 2

top unsigned_char 0

Methods

move x, y, horizDistance, This method allows the user to move the widget
vertDistance with the mouse and sends the widget's new x and y

location to the dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a BtnlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 183

Athena Widget Set, XawSmeLine 0

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BmlDown).

184 Serpent: Slang Reference Manual (CMUJ/SEI-91-UG-5)

Athiena Widget Set, XawText

XawText

Serpent Name XawText

include_file: XI 1/Xaw/AsciiText.h
class: asciiTextWidgetClass
widget-type: widget

Description The text widget provides a modifiable, emacs-style. text editor I' 'er-
face in a widget that is used to allow arbitrary text input. XawText in
this widget can also be modified under program control and displayed

back to the user.

Attributes
Serpent

Name X Type Default

after Widget

allowt~serMove Boolean false

allowUserResize Boolean false

toBottom bottom

managedWhenCreated Boolean true

met hod MethodName

parent Widget NULL

selectedX Position 0

selectedY Position 0

sendBuffer Boolean false

toTop top

widget int

Serpent: Slang R -,. --'ice Manual (CMU/SEI-91-UIG-5) 185

Athena Widget Set, Xa .Text

Text Widget Resource Set

Name X Tye Default

ancestorSensitive Boolean

autoFill Boolean

background Pixel white

backgroundrixanar Pixmap

borderColor Pixel black S
b raerPixmap Pixmap

boraerWidth Dimension I

bottoi argin Position

ca1lba ck CallbackList

colormap Colormap

cursor Cursor

dataCompression Boolean

depth int

dest royCallback CallbackList

displayCaret Boolean

di splayNonprinting Boolean

displayPosition int

echo Boolean

editType unsignedchar 2

font FontStruct 6x13

foreground Pixel black •

height Dimension

insensitiveBorder Pixmap

insertPosit ion int

leftMargin Position 0
length int

ma ppedWhenManaged Boolean true

pieceSize int

rightMargin Position 9
screen Screen

scrollHorizontal unsignedchar false

s cro11verticai unsignedchar false

se leotType s TextSelectType-star

186 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawTeyt

sensitive Boolean true

string String textBuffer

textSink Widget

textSource Widget

topMargin Position

'ransl1at ions Translations: CtrlkKey>A: beginning -of-line()
CtrIkKey>B: backward -charac ter()
Ctrk<Key>D: delete -next -charac ter()
CrrkKey>E: end-of-Iine()
CtrlkKey>F: forward-character()
Ctrk<Key>O niultiply(Reset)
Ctr]kKey>H: delete -previous -charac ter()
CtrlkKey>J: newlmne-and- indent()
CtrlkKey>K: "I-to-end-of-line()
CtrlkKey>L: redraw-display()
CtrlkKey>M: newhle()
Ctrk<Key>N: Tnext-line()
CtrlkKey>O: newline-and-backup()
CtrlkKey>P: previous-line()
CtrlkKey>R: search(backv/ard)
CtrlkKey>S: search(forward)
CtrlkKey>T: transpose-characters()
Ctrl<zKey>U: inultiply(4)
Ctrk<Key>V: next-page()
CtrlkKey>W: kill-selection()
CtrlkKey>Y: insert-selection(CUTBIJFFERI)
CtrlkKey>Z: scroll-one-line-up()
Meta<Key>B: backward-word()
Meta<Key>F: forward-word()
Meta<Key>I: insert-file(
Meta<Key>K: kill-to-end-of-paragraph()
Meta<Key>Q: form -paragraph()
Meta<Key>V: previous-page()
Meta<Key>Y: insert-selection(PRIMARY,CUTBIJFFERO)
Meta<Key>Z: scroll-one-line-down()
Meta<Key>d: delete-next-wordo
Meta<Key>D: kill-word()
Meta<Key>h: delete-previous-wordo
Meta<Key>H: backward-kill-word()
Meta<Key>\\<: beginning-of-file()
Meta<Key>\\>: end-of-fileo
Meta<Key>]: forward-paragraph()
MeLa<Key>[: backward-paragraph()
-Shift Meta<.Key>Delete: delete-previous-word()
Shift Meta<Key>Delete: backward-kill-wordo
-Shift Meta<Key>BackSpace: delete-previous -wordo

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 187

Athena Widget Set, xawText

Shift Meta<Key>BackS pace: backward-kill -word()
<Key >Right: forward -charac ter()
<Kev>Left: backward -c haracter()
<Kev>Downm: next-line()
<Key >Up: previous-line()
<.Kev>Delete: delete -previous -character()
<Key'>BackSpace: delete-previous-charac ter()
<Kev>Linefeed: newline-and-indent()
<Key>Retum: newline()0
<Key>: insert-charo
<Focusln>: focus-mo(
<FocusOut>: focus-out()
CtrlkBmlDown>,<Btnl Up>: top()
CtrlkBm2Down><Btn2Up>: bottomO
Shift<Bmnl DovA;i-,<Btn1Up>: picko
Shift<Bn2Down>,<Btn2Motion>: resize()
Shift<Bm2)Down>,<Btn2-Motiont'.'Leave>,<Btn2Up>: resize()
Shift<Bm-)own>,<Btn2Motion>,<Btn2Up>: resizeO
Shift<Bmn3Down>,<Btn3 Motion>: move()
Shift<Bmn3Down>.<Btn3Motion>,<Leave>,<Btn -lJp>: moveo
Shift<Bm3Down>,<Btn3Motion>,<Bmn3Up>: moveo
<BtnlDown>: select-start()
<Btnl Motion>: extend-adjusto
<BtnlUp>: extend-end(PRIARY, CUTBUFFERO)
<Btn2Down>: insert-selection(PRIMARY, CUT BUFFERO)
<Btn3Down>: extend-start() 0
<Bmn3Motion>-: extend-adjusto
<rBmn3Up>: extend-end(PRIMARY, CUTBUFFERO)

tYpe unsigned-char

useStriraginPiace Boolean

width Dimension

wrap unlsignled-char

x Position

y Position

Constraint Resource Set
Name X ype Default

bottom unsigned-char 0

frorn~oriz Widget NULL

fromVert Widget NULL

horizDistance lint 0

vertDigtance mnt 0

18~8 Serpent. Slang Reference Manual (CMU/SEI-9 1-UG-5)

Athena Widget Set, XawText

'eft unsigned char 2

resizable Boolean false

t Zr unsigned-char 0

Methods

Name Parameters Description

mrnZve x, y, horizDistance, This method ,liows the user to move the widget with the
vertDistance mouse and sends the widget's new x and y location to the

dialogue.

res ze x, y. width, height This method allows the user to resize this widget with the
mouse and sends its -. and N location and new width and
height to the dialogue.

send textBuffer This method is returned in response to the sendbuffer
flag being set to true by the dialogue or to a translation
table action.

ZIZK selectedX, selecte iY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
imnlDown).

tcp This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

Serpeni: Si-,g Reference Manual (CMU/SEI-91-UG-5) 189

Athiena Widget Set, XawTextentry

XawTextentry

Serpent Name XawTextentry

include-file: XI l/Xaw/AsciiText.h

class: asciiTextWidgetClass
widget-type: widget

Description The XawTextentry widget is similar to the Text widget except a
carriage return activates the send method. ThieXawTextentry widget
was created for use in formis so that the text focus can shift

automatically from item to item via carriage return.

Attributes
Serpent

Name X jy Default

after Widget

allowUserMove Boolean false

allowUserResize Boolean false

toBottom. bottom

managedWhenCreated Boolean true

met hod MethodName

parent Widget

selectedX Position 0

selectedY Position 0

sendBuffer Boolean

toTop top

widget lflt0

190 Serpent Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawTextentry

Text Widget Resource Set

Name X Type Default

accelerators Accelerators

ancestorSensitive Boolean

autoFiil Boolean

background Pixel

backgroundPixnap Pixmap

borderColor Pixel

borderPi--anap Pixmap

borderWidth Dimension

bottomMargin Position

caliback CallbackList

colormap Colormap

cursor Cursor

dataCompression Boolean

depth int

destroyCaliback CallbackList

displayCaret Boolean

displayNonprinting Boolean

displayPosition lit

echo Boolean

editType unsigned char 2

font FontStruct 6x13

foreground Pixel

height Dimension

insensitiveBorder Pixmap

insertPosition int

leftMargin Position

length int

mappedWhenManaged Boolean

pieceSize lilt

rightMargin Position

screen Screen

scrollHorizontal unsigned char

scrollVerticai unsigned-char

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 191

Athena Widget Set, xawTextentry

selectwypes TextSelectType-star

:z3..Zitive Boolean

string String textBuffer

textSink Widget

textSource Widget

topMargin Position

transl1at ions Translations: CtrlkKey>A: beginning -of- line()
CtrlkKey>B: backward-character()
Ctrk<Key>D: delete-next-character()
Ctrk<Key>E: end-of-line()
Ctrk<Key>F: forward-character()
CtrlkKey>G: multiply(Reset)
Ctrk<Key>H: delete-previous -character()
CtrlkKey>J: newlmne-and-indent()
CtrlkKey>K: kill -to-end-of-line()
CtrlkKev>L: redraw-display()
CtrlkKey>M: newline()
CtrlkKey>N: next-line()0
CtrlkKey>O: newlinie-.and-backup()
Ctrk<Key>P: previous-lineo
CtrlkKey>R: search(backward)
CtrlkKey>S: search(forward)
CtrlkKey>T: transpose -charac ters()0
Ctrk<Key>U: multiply(4)
Ctrk<Key>V: next-pageo
CtrlkKey>W: kill-selection()
CtrlKey>Y: insertselection(CUTLBUFFER1)
CtrlkKey>Z: scroll-one-line-up()
Meta<Key>B: backward-wordo 0
Meta<Key>F: forward-word()
TVetai<Key>L insert-file()
Meta<Key>K: kill-to-end-of-paragraph()
Meta<Key>Q: form-paragraph()
Meta<Key>V: previous-pageo
Meta<zKey>Y: insertselection (PRIMARY CUTBUFFERO) 4
Meta<Key>Z: scroll-one-lmne-down()
Meta<Key>d: delete -next-wordo
Metac<Key>D: kill-word()
Meta<Key>H: backward-kill1-word()
Meta<Key>\\<: beginning-of-file()
Meta<Key>\\V: end-of-file()
Meta.<Key>]: forward-paragraph()
Meta<Key>[: backward-paragraph()
-Shift Meta<Key>Delete: delete previous-word()
Shift Meta<Key>Delete: backward-kill wordo
-Shift Meta<Key>BackSpace: delete-previous -word()

192 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawTextentry

Shift Meta<Key>BackSpace: backward-killI-word()
Shift<Key>Tab: tab()
<Key>Right: forward-character()
<Key>Left: backward-character()
<Key>Down: next-line()
<Key>Up: previous-line()
<Key>Delete: delete-previous-character()
<Key>BackSpace: delete-previous-charac ter()
<Key>Linefeed: newline-and-indent()
<Key>Return: sendo
<Key>: insert-char()
<Focusln>: focus-imo
<FocusOut>: focus-out()
CtrlkBtnlDown>,<Btnl Up>: topo
Ctrl<Btn2Down>,<Btn2Up>: bottomno
ShifI<BmlDown>,<BtmlUp>: picko
Shift<Btn2Down>,<Btn2Motion>: resizeO
Shift<Bmn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resizeO
Shift<Bmn3Down>,<Bt3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveG
Shift<Bma3Down>,<Btn3Motion>.<Btn3Up>: moveo
<BmlIDown>: select-start()
<Btnl Motion>: extend-adjusto
<BtnlUp>: extend-end(PRIMARY, CUTLBUFFERO)
<Btn2Down>: insert-selection(PRIMARY, CUTBUFEERO)
<Btn3Down>: extend-start()
<BtN3Motion>: extend-adjusto
<Btn3Up>: extend-end(PRIMlARY, CUTLBUFFERO)

type unsignedschar

useStringlnPlace Boolean

width Dimension

wrap unsignedchar

x Position

y Position

Constraint Resource Set
Name XTwDefault

bottom unsignedscha 0

from~oriz Widge NULL

fromVert Widge NULL

horizDistance in 0

vertDistance in 0

Serpent. Slang Reference Manual (CMUISEI-91-UG-5) 193

Athena Wiaget Set, XawTextentry 0

left unsigned-cha 2

resizable Boolean false

right unsignedcha 2

top unsignedcha 0

Methods

Name Parameters Description

move x, y, horizDistance, This method allows the user to move the widget with the
vertDistance mouse and sends the widget's new x and y location to the

dialogue.

resize x. y, width, height This method allows the user to resize the widget with the 0
mouse and sends its x and y location and new width and
height to the dialogue.

send textBuffer This method is returned in response to the sendbuffer
flag being set to true by the dialogue or to a translation
table action.

tab This method is sent to the dialogue in response to a shifted
tab.

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the 0
dialogue in response to a user event (typically a shifted
BtnlDown).

0

0

0

194 Serpent" Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawToggleButt on

XawToggleButton

Serpent Name XawToggleButtcn

includefile: Xl 1/Xaw/Toggle.h
class: toggleWidgetClass
widget-type: widget

Description The Toggle widget is an area, often rectangular, containing a text

label or bitmap image. This widget maintains a Boolean state (e.g.,
True/False or On/Off) and changes state whenever it is selected. When

the pointer is on the button, the button may become highlighted by a

rectangle around its perimeter. This highlighting indicates that the
button is ready for selection. When pointer button 1 is pressed and
released, the Toggle widget indicates that it has changed state by
reversing its foreground and background colors, and its notify action
is invoked, calling all functions on its callback list. If the pointer is
moved out of the widget before the button is released, the widget
reverts to its normal foreground and background colors, and releasing
the button has no effect. This allows the user to cancel an action.

Attributes

Serpent

Name X Type Default

allowUserMove Boolean false

allowUserResize Boolean false

toBottom bottom

managedWhenCreated Boolean true

met hod MethodName

parent Widget NULL

toTop top

selectedX Position 0

selectedY Position 0

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 195

Athena Widget Set, XawToggleButton

widget int

Command Widget Resource Set
Name X iJy Default

accelerators Accelerators

ancestorSensit lye Boolean

background Pixel white

backgroundPi~nap Pixmap

bitmap Pixmap

borderColor Pixel black

borderPi.='.ap Pixmap

borderWidth Dimension1

callback CallbackList Six-callback

colormap Colormap

cornerRoundPercent Dimension

cursor Cursor

depth int

destroyCaliback CallbackList

font XFontstruct. 6xl3

foreground Pixel black

height Dimension

highlightThickness Dimension

insensitiveBorder Pixmap

internaiHeight Dimension 2

internalWidth Dimension 4

justify unsigned-char I

label String

mappedWhenManaged Boolean true

radioDala caddrl_t

radioGroup Widget

resize Boolean

screen Screen

sensitive Boolean true

shapeStyle unsigned_char

state Boolean

196 Serpent.- Slang Reference Manual (CMU/SEI-91-UG-S)

Athena Widget Set, XawToggleButton

translations Translations: Shift<BtnlDown>,<BtnlUp>: picko
Shift<Btn2Down>,<Btn2Motion>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize(
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize0
Shift<Btn3Down>,<Btn3Motion>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<B m3Down>,<Btn3Motion>,<Btn3Up>: moveo
<BmlDown>,<BtnlUp>: toggleo notify 0
<EnterWindow>: highlight(Always)
<LeaveWindow>: unhighlight0

width Dimension

x Position

y Position

Constraint Resource Set
Name X TYpe Default

bottom unsigned-char 0

fromHoriz Widget NULL

fromVert Widget NULL

horizDistance int 0

vertDistance int 0

left unsignedchar 2

resizable Boolean false

right unsigned_char 2

top unsignedchar 0

Methods

Name Parameters Description

move x, y, horizDistance, This method allows the user to move the widget with
vertDistance the mouse and sends the widget's new x and y location to

the dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a Btnl Down).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 197

Athena Widget Set, XawToggleButton 0

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the poini to the
dialogue in response to a user event (typically a shifted
BmlDown).

0

0

0

0

0

i

198 erpnt: lan Refrene Mnual(CM/SEI91-G.5

0

Athena Widget Set, XawTopLevelShell

XawTopLevelShell

Serpent Name XawTopLevelShell

includefile: Xl l/Shell.h
class: topLevelShellWidgetClass
widget-type: shell

Description Used for normal top level windows (for example, any additional top
level widgets an application needs).

Attributes

Topl evelShell

Name X Tpt

iconic Boolean

iconName String

iconNameEncoding unsigned_char

WMShell
Name X vpe

baseHeight int

baseWidth int

heightInc int

iconMask Pixmap

iconPixmap Pixmap

iconWindow Window

iconX int

.i conY iit

initialState int

input Boolean

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 199

Athena Widget Set, XawTopLevelShelJ.

maxAspectX int

maxAspectY int

maxheight int9

maxWidth int

min.AspectX int

miriAspectY int

miriHeight int

minWidth int

title char-star

titleEncoding unsigned_char

transient Boolean

waitForWm Boolean

widthlnc int

windowGroup XLD

wrn.Timeout int

Shell Resource Set
Name X Type

allo-,ShellResize Boolean

createPopupChildProc Boolean

geometry caddrt

overrideRedirect Boolean

popdownCallback cauflr_1

popupCallback caddr-t

saveUnder Boolea=

200 Serpem: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawViewport

XawViewport

Serpent Name XawViewport

/include_file: X 1/Xaw/Viewport.h
widget-type: widget

Description The XawViewport widget consists of a frame window, one or two
scrollbars, and an inner window. The size of the frame window is

determined by the viewing size of the data that is to be displayed and
the dimensions to which the XawViewport is created. The inner
window is the full size of the data that is to be displayed and is clipped

by the frame window. The XawViewport widget controls the
scrolling of the data directly. No application callbacks are required for

scrolling.

Attributes

Serpent

Name xjyp Default

allowUserMove Boolean false

allowUserResize Boolean false

toBottom bottom

focus focus

managedWhenCreated Boolean true

method MethodName

parent Widget

se1ectedX Position 0

selectedY Position 0

toTop top

widget int

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 201

Athena Widget Set, XawViewport

Paned Widget Resource Set
Name X TXR5! Default

accelerators Accelerators9

ancestorSensitive Boolean

allowHoriz Boolean

allowVert Boolean

backgroun Pixel

backgroundPiavnap Pixmap

borderColor Pixel

border~immap Ilixmap

borderWidth Dimension

children WidgetList

cclormap Colorinap

depth it

destroy--a''-IItk CallbackList

forceBars Boolean

height Dimension

mappedWhen.Managed Boolean

nuxnChildren Cardinal

screen Screen

sensitive Boolean

translations Translations: Shift<Btnl Down>,<Bnl Up>: pick()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,sLeave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motiori>,<Btn2Up>: resize()
Ctr<Bm I Down>,<BtnI Up>: top()
Ctrk<Btn2Down><Btm2Up>: bottom()
Shift<Btn3Down>,<Btn3Motion>: moveod
Shift<Btn3Dowwz',<Btn3Motion>,<Leave> <Btn3Up>: moveo
Shift<Btn3Down>,<Brn3Motion>,<Btn3Up>: niove()

useBotton Boolean

u-eRight Boolean

width Dimension

X Position

y Position

202 Serpent- Slang Reference Manual (CMUfSEI-9 1-UG-S)

Athena Widget Set, XawViewport

Constraint Reseurce Set

Name X Tye Default

bottom unsi -nedcha 0

f ronHoriz Widge NULL

fromVert Widge NULL

horizDistance in 0

vertDistance in 0

left unsigned-cha 2

re sizable Boolea false

right unsignedcha 2

top unsignedcha 0

Methods

Name Parameters Description

move -:, y, horizDistance, This method allows the user to move the widget with the
vertDistance mouse and sends the widget's new x and y location to the

dialogue.

_esize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse, and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

Serpent. Slang Reference Manual (CMU/SEI-91-UG-5) 203

9

0

9

0

S

9

0

204 Set-pem Slang Reference Manual (CMU/SEI-91-UG-S)

0

Motif Widget Set

Appendix H Motif Widget

Set

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 205

Motif Widget Set

0

0

0

0

0

0

0

0

Serpent: Slang Reference Manual (CMU/SEI-91-UG-S) 206

0

Motif Widget Set, XmArrowButton

XmArrowButton

Serpent Name XmArrowButton

includefile: Xm/ArrowB.h
class: ArrowButtonWidgetClass

widget-type: widget

Description Te XmArrowButton widget consists of a directional arrow

surrounded by a border shadow. When it is selected, the shadow
moves to give the appearance that XmArrowButton has been pressed

in. When XmArrowButton is not selected, the shadow moves to give
the appearance that XmArrowButton has been released, or is out.

Attributes

Serpent

Name XTyp Default

allowUserMove Boolean false

allowUserResize Boolean false

method MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

act ivateCal iback CallbackList Sixcallback

armCallback CallbackList

arrowDirection unsignedchar ARROWUP

disarmCallback CallbackList

Primitive Resource Set
Name X jyp Default

bottomShadowColor Pixel

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 207

Motif Widget Set, XmArrowButton

bottomShadowPimap Pixmap UNSPECIED_PIXMAP

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightOnEnter Boolean false

highlightPixmaap Pixmap

highlightThickness short 0

shadowThickness short 2

topShadowColor Pixel

topShadowPixmap Pixmap UNSPECHED_PIXMAP

traversalOn Boolean false

unit Type unsignedchar PIELS

userData caddr-t NULL

Core Resource Set
Name X Typ Default

accelerators Accelerators

ancestorSensitived Boolean

background Pixel

backgroundPixmap Pixmap

borderColor Pixel

borderPixmap Pixmap

borderWidth Dimension 1

colormap Colormap

depth Cardinal

destroyCallback CallbackList

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

width Dimension

x Position

y Position

translations Translations: Shift<BmlDown>,<BtnlUp>: pick()
<BtnlDown>" Arm()

208 Serpent: Slang Reference Manual (CMU/SEI-91 -UG-5)

Motif Widget Set, XmArrowButton

<BtnlUp>: Activateo Disarm()
<Key>Return: ArmAndActivate0
<Key>space: ArmAndActivate0
<EnterWindow>: Enter()
<LeaveWindow>: Leave()
Shift<Btn2Down>,<Btn2Motion>: resizeO
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>:
resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize0
Shift<Btn3Down>,<Btn3Motion>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods

Name Parameters Description

move X, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and

height to the dialogue.

notify This method is sent to the dialogue in response to a user

event (typically a BtnlDown).

pick selectedX, selectedY This method allows the user to select a roint on the widget

with the mouse and sen&. the location of the point to the
dialogue in response to a user event (typically a shifted
BmlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 209

Motif Widget Set, XrmulletinBoard

XmBulletinBoard

Serpent Name XmBulletinBoard
0

include_file: Xm/BulletinB.h
class: Bullet inBoardWidgetClass

widget-type: widget

Description XmBulletinBoard is a composite widget that provides simple

geometry management for children widgets. It does not force
positioning on its children, but can be set to reject geometry requests
that would result in overlapping children. XmBulletinBoard is the

base widget for most dialogue widgets and is also used as a general
container widget.

Attributes

Serpent

Name x Default

allowUserMove Boolean false

allowTlserResize Boolean false

focus focus

method MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

BulletinBoard Resource Set

Name X Type Default

allowOverlap Boolean

autoUnmanage Boolean

buttonFontList FontList

210 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmBulletinBoard

cancelButton Widget

defaultButton Widget

defaultPosition Boolean

dialogStyle unsigned.char

dialogTitle String

focusCallb-v ~ CallbackList

labelFontList FontList

mapCallback CallbackList

marginHeight short

marginWidth short

noResize Boolean

resizePolicy unsigned char

shadowType unsigned~char

stringDirection StringDirection

textFontList FontList

textTranslations Translations

unxnapCallback CallbackList

Manager Resource Set

Namne X3m Default

bottomShadowColor Pixel

bott omShadowP ixmap Pixmnap UNSPECIFIED PDXMAP

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightPixmap Pixmp

shadowThickness short

topShadowColor Pixel

topShadowPixmap Pixmp UNSPECIIED_-PDCMAP

unit Type unsigne~char PIXELS

userData caddzr-t NULL

Serpent: Slang Reference Manual (CMUISEI-91-UG-5) 211

Motif Widget Set, XmBulletinBoard 0

Composite Resource Set

Name X lype Default

insertPosition OrderProc 0

accelerators Accelerators

ancestorSensitive Boole=n

backgro'ind Pixel

backgroundPixmap Pixmap

borderColor Pixel

borderPixmap Pixmap

borderWidth Dimension I

colormap Colormap

depth Cardinal

de stroyCallback CallbackList

height Dimension

mappedWhenManaged Boolean 0

screen Screen

sensitive Boolean

width Dimension
x Position0
y Position

translations Translations: Shift<BtnlDown>,<BtnlUp>: picko
<BtnlDown>,<BtnlUp>: select()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resizeO
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move(
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveo

Methods

Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the •
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

212 Serpent: Slang ReJWence Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmBulletinBoard

select selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue.

pick selectedX, selected Y This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the

dialogue in response to a user event (typically a shifted
BtnlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 213

Motif Widget Set, XmCascadeButton

XmCascadeButton

Serpent Name XmCascadeButton

includefile: Xm/CascadeB.h

class: CascadeButtonwidgetClass

widget-type: widget

Description The XmCascadeButton widget links two MenuPanes or a MenuBar

to a MenuPane. It is used in menu systems and must have a

RowColumn parent with its rowColumnType resource set to
MENUBAR, MENUPOPUP, or MENUPULLDOWN. It is the only widget

that may have a pulldown MenuPane attached to it as a submenu. The

submenu is displayed when this widget is activated within a MenuBar,

a PopupMenu, or a PulldownMenu. Its visuals can include a label or
pixmap and a cascading indicator when it is in a Popup or Pulldown

MenuPane; when it is in a MenuBar, it can include only a label or a
pixmap.

Serpent

Name x Default

allowUserMove Boolean false 0

allowUserResize Boolean false

met hod MethodName

parent Widget

selectedX Position 0 0

selectedY Position 0

widget int

ArrowButton

Name x1ym Default

activateCallback CallbackList Sixcallback

cascadePixmap Pixmap

cascadingCallback CallbackList

214 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmCascadeButton

mappingDelay mnt

subMenuld Widget

Label Resource Set
Name X Type

accelerator String

acceleratorText String

al igniment unsignedchar

fontList FontList

labelInsensitivePixanap Pixmap

labelPixanap Pixmap

labelString String

labelType uflsignecLchar

marginBottom short

inarginHeight short

marginLeft short

marginRight short

marginTop short

inarginwidth short

mnemonic char

recomputeSize Boolean

stringDirection StringDirection

Primitive Resource Set
Name X Type Default

bottornShadowColor Pixel

bottomShadowPixanap Pixmnap UNSPECFIED.Yixmap

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightOnEnter Boolean false

highlightPixanap Pixmap

highlightThickness short 0

shadowThickness short 2

Serpent: Slang Reference Manual (CMUISEI-91-UG-5) 215

Motif Widget Set, XmCascadeButton

topShadowColor Pixel

topShadowPi-anap Pixxnap UNSPECIFIEDPixnap

traversalOn Boolean false

unitType unsigned-char PIXELS

userData caddr-t NULL

accelerators Accelerators

ancestorSensitive Boolean0

background Pixel

backgroundPixanap Pixmap

borderColor Pixel

borderPixanap Pixmap

borderWidth Dimension1

colormap Colormap

depth Cardinal

destroyCallback CallbackList

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

width Dimension

X Position

y Position

translations Translations: <BtnDown>: MenuBarSelect()
<EnterWindow>: MenuBarEnter()
<LeaveWindow>: MenuBarLeave()
<BtnUp>: DoSelect()
'<Key>Return: VeySelecto)
<Key>Escape: CleanupMenuBar()
Shift<BtnlDown>,<BtnlUp>: pick()
Shift<Btn2Down>,<Bt2Motion>: resize()
Skift<Btm2Down>,<Bm2-Motion>s<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,t<Btn2Motion>,<Bm2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: moveo
Shift<Btm3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

216 Serpent: Slang Reference Man-al (CMUISEI-91-UG-5)

Motif Widget Set, XmCascadeButton

Methodq
Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a BtnlDown).

pi -k selectedX, selectedY This method allows the user to select a point on the widget
with the mouse, and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

S. rpent: Slang Reference Manual (CMU/SEI-91-UG-5) 217

Motif Widget Set, XmCommand

XmCommand

Serpent Name XmCormnand

includefile: Xm/Command.h
class: CommandWidgetClass

widget-type: widget

Description The XmCommand widget is a special-purpose, composite widget for
command entry that provides a built-in mechanism for displaying
command histories. XmComand includes a field for input from the
command line, a command line prompt, and a region for displaying the 0
command history list.

Attributes
Serpent •

Name xiypt Default

allowUserMove Boolean false

allowUserResize Boolean false

method MethodName 0

parent Widget

selectedX Position 0

selectedY Position 0

widget int 0

Command
Name X Type Default

command String 0

commandChangedCa1iback CallbackList

cormmandEnteredCallback CallbackList

historyltems StringTable

historyItemCount int 0

218 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

0

Motif Widget Set, xmCormnand

historyMaxltems int

historyVisibieltemCount int

prornptString String

SelectionBox Resource Set
Name X Type Default

app lyCallback CallbackList

applyLabelString String

cancelCallback CallbackList

cancelLabelString String

d~ alogType unsigned-char

helpLabelString String

listlteinCount int

listtens StringList

listLabelString String

listvisibleItemCount lflt

inijiizeButtons Boolean

mustMatch Booleani

noMatchCallback CallbackList

okCallback CallbackList

okLabelString String

selectionLabeiString String

textAccelerators Translations

textColunns imt

textValue String

BulletinBoard Resource Set
Name X Type Default

allow~verlap Boolean

aut oUnxanage Boolean

buttonFontList FontList

canceiButton Widget

defaultButton Widget

defaultPosition Boolean

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 219

Motif Widget Set, XmCoznmand

dialogStyle unsigned-char

dialogTitle String

focusCallback CallbackList

labelkontList FontList

mapCallback CallbackList

margin~eight short

marginWidth short

noResize Boolean

resizePolicy unsigned-char

shadowType unsigned-char

stringDirection StringDirection

textFontList FontList

textTranslations Translations

urunapCallback CallbackList

Manager Resource Set
Name X yeDefault

bottomShadowColor Pixel

bottomShadowPixmap Pixmap UNSPECIFIEDPixmnap

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightPi~aap Pxnap0

shadowThickness short

topShadowColor Pixel

topShadov;Pimcnap Pixmap UNSPECIFIDPixmap

unitType unsigned_char PIXELS

userData caddr-t NULL

Composite Resource Set
Name X1R

insertPosition OrderProc

220 Serpent: Slang Reference Manual (C~tJ/SEI.9 1-UG-5)

Motif Widget Set, XmCommand

Core Resource Set

Name X Default

accelerators Ar'lerators

ancestorSensitive Boolean

background Pixel

backgroundPixmap Pixmap

borderColor Pixel

borderPi.amap Pixmap

borderWidth Dimension 1

colormap Colormap

depth Cardinal

destroyCaliback CallbackList

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

width Dimension

x Position

y Position

translations Translations: Shift<BtnlDown>,<BtnlUp>: pick()
Shift<Btn2Down>,<Btn2Motion>: resize0

Shift<Bm2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resizeO
Shift<Bm2Down>,<Btn2Motion>,<Btn2Up>: resize(
Shift<Btn3Down>,<Btn3Motion>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods

Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize this widget with the

mouse and sends its x and y location and new width and

height to the dialogue.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 221

Motif Widget Set, XmCommand

paick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

2

222 erpnt: lan R~frcn¢ Mnual(CM/SEI91-G-5

Motif Widget Set, xrDrawingArea

XmDrawingArea

Serpent Name XmDrawingArea

includefile:Xm /DrawingA.h

class: DrawingAreaWidgetClass
widget-type: widget

Description The XmDrawingArea widget is an empty widget that is easily

adaptable to a variety of purposes. It does no drawing and defines no
behavior except for invoking callbacks. Callbacks notify the

application when graphics need to be drawn (exposure events or
widget resize) and when the widget receives input from the keyboard

or mouse. Applications are responsible for defining appearance and

behavior as needed in response to XmDrawingArea callbacks.

Attributes

Serpent

Name XTy Default

allowUserMove Boolean false

allowUserResize Boolean false

method MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

DrawingArea

Name X Tye Default

exposeCallback CallbackList

inputCallback CallbackList

marginHeight short

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 223

Motif Widget Set, XmDi awingArea

marginWidth short

resizeCailback CallbackList

resizePolicy unsigned-char

Manager Resource Set

Name XLnDefault
bottomShadowColor Pixel0

bottomShadowPixanap Pixmap UNSPECFIDPixnap

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black
highlightPixanap Pixmap

shadowThjckness short

topShadowColor Pixel

topShadowPixanap Pixmap UNSPECFIDPixmap

unit Type unsigned_char PIXELS

userData caddr-t NULL

Composite Resource Set
Name X 13Q

insertPositiori OrderProc

Core Resource Set
Namne X Type Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPixanap Pixmap

borderColor Pixel

borderPi~anap Pixmnap

borderwidth Dimension1

colorrnap Colormap

depth Cardinal

destroyCallback CallbackList

224 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmDrawingArea

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

width Dimension

x Position

y Position

translations Translations: Shift<BtnlDown>,<BtnlUp>: picko
Shift<Btn2Down>,<Btn2Motion>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resizeO
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize0
Shift<Btn3Down>,<Btn3Motion>: move(
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Bta3Down>,<Btn3Motion>,<Btn3Up>: moveo
<BtnlDown>: Arm()
<BmlUp>: Activate()
<EnterWindow>: Entero
<FocusIn>: FocuslnO

Methods

Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 225

Motif Widget Set, XmDrawnButton

XmDrawnButton

Serpent Name XmDrawnButton

includefile: Xm/DrawnB.h
class: DrawnButtonWidgetClass
widget-type: widget

Description The XmDrawnButton widget consists of an empty widget window

surrounded by a shadow border. It provides the application developer
with a graphics area in which PushButton input semantics may be

used.

Attributes

Serpent

Name x yr Default 0
allowUserMove Boolean false

allowUserResize Boolean false

method MethodName

parent Widget 0
selectedX Position 0

selectedY Position 0

widget it

DrawnButton
Name X Type Default

activateCallback CallbackList Sixcallback

armCallback CallbackList -

disarmCallback CallbackList

exposeCaliback CallbackList

pushButtonEnabled Boolean

226 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

0

Motif Widget Set, XmDrawnButton

resizeCallback CallbackList

shadowType unsigned-char

Resource Set
Name X jype

accelerator String

acceleratorText String

alignment umsignedschar

fontList FontList

labelinsensitivePixmtap Pixmnap

label~ixmap Pixinap

labelString Suring

labelType unsigned-char

marginBottom short

marginHeight short

marginLeft short

marginRight short

marginTop short

marginwidth short

mnemonic char

recomputeSize Boolean

stringDirection StringDirection

Primitive Resource Set
Namne X)KDefault
bottomShadowColor Pixel

bott omShadowP ixmap Pixmnap UNSPECFED-Pixmap

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightOnEnter Boolean false

highlightPixamap PiXMap

highlightThickness short 0

shadowThickness short 2

Serpent: Slang Reference Manu~al (CMUISEI-91-UG-5) 227

Motif Widget Set, XmDrawnButton

topShadowColor Pixel

topShadowPixanap Pixmnap UNSPECIFIEDPixmnap

traversalOn Boolean false

unitType unsigned_char PIXELS

userData caddr-t NULL

Core Resource Set

Namne X TYpe Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel 0

backgroundPixanap Pixmap

borderColor Pixel

borderPixanap Pixmap

borderWidth Dimension1

colormap Colormap

depth Cardinal

destroyCaliback CallbackList

height Dimension0

mappedWhenianaged Boolean

screen Screen

sensitive Boolean

width Dimension

X Position

y Position

translations Translations: Shift<BtnlDown>,<BtnlUp>: pick()
Shift<Btn2Down>,<Btn2Motion>: resize() 0
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Sbift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btii3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btm3Down>,<Btn3Motion>,<Btn3Up>: moveo
<BtulDown>: Armo(
<BtnlUp>: Activate() Disarm()
<Key>Return: ArmAndActivate()
<Key>space: ArmAndActivate()
<EnterWindow>: Enter()
<LeaveWindow>: Leave() 0

228 Serpent: Slang Reference Manual (CMUISEI-91-UG-5)

Motif Widget Set, XmDrawnButton

Methods

Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a BtnlDown).

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 229

Motif Widget Set, XmErrorDialog 0

XmErrorDialog

Serpent Name XmErrorDialog

includefile: XM/MessageB.h

class: MessageBoxWidgetClass

widget-type: widget

Description The XmErorDialog widget is a MessageBox created with a

convenience routine. This dialogue is used to warn a user about

problem situations. The dialogue box comes with three buttons: OK,

Cancel, and Help. The default symbol is an octagon with a diagonal

slash.

Attributes

Serpent

Name X Default

allowUserMove Boolean false

allowUserResize Boolean false

deactivate Boolean false 0
isComposite Boolean false

method MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

MessageBox CallbackList

cancelLabelString String

defaultButtonType unsignedchar

dialogType unignedchar

helpLabelString String

messageAlignment unsignedchar 0

230 Serpent: Slang Reference Manual(CMUISEI-91-UG-5)

Motif Widget Set, XmnErrorDialog

ressageString String

rninixizeButtons Boolean

ok~allback CallbackList

okLabelString String

symbolPi~iap Pixmap

r ulletinBoard Resource Set

Name X Typ

allowoverlap Boolean

autoUrimanage Boolean

butt onFontList FontList

cancelBut4-on Widget

defaultButton Widget

defaultPosition Boolean

dialogStyle unsigned-char

dialogTitle String

focusC-Aliback CalltackList

labelFontList FontList

mapCallback CallbackList

marginHeight short

marginWidth short

noResize Boolean

resizePolicy unsignedchar

shadowType unsignedschar

stringDirection StringDirection

textFontList FontList

textTranslations Translations

unmapCallback CallbackList

Manager Resource Set
Name X Typ Default

bottomShadowColor Pixel

bott orShadowP ixrvap Pixniap UNSPECW[1EDPIXMAP

foreground Pixel

Serpent: Slang Ref' ence Manual (CM1J/SEI-91-UG-S) 231

Motif Widget Set, XmErrorDialog

helpCallback CallbackList

highlightColor Pixel black

highlightPixonap Pixinap

shadowThickness short

topShadowColor Pixel

topShadowPixanap Pixmap UNSPECIFIEDPIXMAP

unit Type unsigned-char PIXELS

userData caddr-t NULL

Composite Resource Set
Name X Type0

insert~osition OrderProc

accelerators Accelerators

ancestorSensitive Boolean

background Pixel0

backgroundPicxap Pixmap

borderColor Pixel

borderei~aap Pixmap

borderWidth DimensionI

colormap Colormap

depth Cardinal

destroyCallback CallbackList

height Dimension

mappedWhen-Managed Boolean

screen Screenl

sensitive Boolean

width Dimension

x Position

y Position

transl1at ions Translations: <zEnterWindow".-Enter()
<Focusln>: Focus~n()
Shift<Bml Down>,<BtnlUp>: pick()
<BtnlDown>: Arm()
<Bnl Up>: Activateo
<Key>Fl: Helpo
<Key>Return: Return()
<Key>KPEnter:. Return()

232 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmErrorDialog

Shift <Btn2Down>,<Btn2Motion>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize(
Shift<Btn2Down>,<Bm2Motion>,<Btn2Up>: resize0
Shift<Btm3Down>,<Btn3Motion>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveo

Methods

Name Parameters Description

move X, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 233

Motif Widget Set, XnFileSelectionBox S

XmFileSelectionBox

Serpent Name XmFileSelectionBox

includefile: Xm/FileSB.h
class: FileSelectionBoxWidgetClass

widget-type: widget
checkroutine: checkFSB

Description The XmrileSelectionBox widget traverses directories, views the
files in them, and then selects a file. An XmFileSelectionBox

widget has four main areas:
" a directory mask that includes a filter label and a directory mask

input field used to specify the directory that is to be examined

" a scrollable list of file names
" a text input field for directly typing in a file name
" a group of PushButtcns. OK, Filter, Cancel, and Help

Attributes

Serpent

Name X Type Default •

allowUserMove Boolean false

allowUserResize Boolean false

method MethodName

parent Widget 5
selectedX Position 0

selectedY Position 0

widget int

FileSelectionBox
Name X Type

dirMask String

234 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XrFileSelectionBox

dirSpec String

fileSearchProc Proc

filterLabelString String

list~pdated Boolean

SelectionBox Resource Set
Name X jyp~e

applyCallback CallbackList

applyLabelString String

cancelCallback CallbackList

cancelLabelString String

dialogType unsignedLciar

helpLabelString String

listltemnocunt int

listltems StringList

listLabelString String

listVisibjleltemCount ilt

rinimizeButtons Boolean

mustMatch Boolean

noMat chCallback CallbackList

okCallback CallbackList

okLabelString String

selectionLabelString String

textAccelerators Translations

textCoJlumns n

textValue String

BulletinBoard Resource Set
Name X Ty~

allow~verlap Boolean

autoUn~manage Boolean

buttonFontList FontList

cancelButton Widget

defaultButton Widget

Serpent. Slang Reference Manual (CMU/SEI-91-UG-5) 235

Motif Widget Set, xmFileSelectionBox0

defaultPosition Boolean

dialogStyle unsigned-char

dialogTitle String

focusCallback CallbackList

labelFontList FontList

mapCallback CallbackList

marginHeight short

marginwidth short

noResize Boolean

resizePolicy unsigned-char

shadowType unsigned-char

stringDirection StringDirection

textFontList FontList

textTranslations Translations

unmnapCa1 iback CallbackList

Manager Resource Set

Name X)wDefault

bottomShadowColor Pixel

bottomShadowPixmap Pixmap UNSPECIFIE-jixmnap

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightPiaap Pixmap

shadowThickness short

topShadowColor Pixel

topShadowPixmap Pixmnap UNSPECIFIEDPixinap

unitType unsigned-char PDXELS

userData caddr~t NULL

Composite Resource Set

Name XTMDefault

insertPosition OrderProc

236 Serpent: Slang Reference Manual (CMUISEI-91-UG-5)

Motif Widget Set, XmileSelectionBox

Core Resource Set

Name, yE Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPixanap Pixinap

borderColor Pixel

borderPi~cap Pixinap

borderWidth Dimension1

colormap Colormap

depth Cardinal

destroyCallback CallbackList

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

width Dimension

X Position

y Position

translations Translations: <EnterWindow>:Enter()
<Focusin>: Focusln()
Shift<BtnlDown>,<BtnlUp>: picko
<BtnlDown>: Arm()
<BtnlUp>: Activate()
<.Key>F1: Helpo
<Key>Return: Return()
<Key>KPEnter Return()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift'zBtn3Down>,<Btn3Motion>: moveo
Shift<Bma3Down>,<Bmn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods

Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 237

Motif Widget Set, XmFileSelectionBox 0

resize x, y, width, height This method allows the user to resi7,e the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

238 Serpent: Slang Reference Manual (CMU/SEI-9 I-UG-5)

Motif Widget Set, XmForm

XmForm

Serpent Name XmForm

includefile: Xm/Form.h
class: FormWidgetClass

widget-type: widget

Description The xmForm widget is a container widget with no input semantics of
its own. Constraints are placed on children of Xmorm to define

attachments for each of the child's four sides. These attachments can
be to XmForm, to another child widget or gadget, to a relative position
within xmaorm, or to the initial position of the child. The attachments

determine the layout behavior of XmForm when resizing occurs.

Attributes

Name x Default

allowUserMove Boolean false

allowUserResize Boolean false

focus focus

method MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

Form
Name X Type Default

fractionBase int

horizontalSpacing int

rubberPositioning Boolean

verticalSpacing int

Serpent Slang Reference Manual (CMIJ/SEI-91-UG-5) 239

Motif Widget Set, xmForm0

Form Constraint
Name x Tvp

allow~verlap Boolean

bottomAttachxnent unsigned-char

bottomOffset int

bottomPosition int

bottomWidget Widget

leftAttachnent unsigned_char

leftOffset int

leftPosition int

leftwidget Widget

resizable Booleani

rightAttachnent unsigned-char

rightoff set int

rightPosition mnt

right Widget Widget

topAttachment unsigned-char

topOff set int

topPosition int

topWidget Widget

BulletinBoard Resource Set

Name X Ivpe

allowoverlap Boolean

autoUnmanage Boolean

buttonFontList FontList

cancelButton Widget

defaultButton Widget

defaultPosition Boolean

dialogStyle unsigned_char

dialogTitle String

focusCallback CallbackList

labelforitLict Font.List

mapCallback CallbackList

240 Serpent: Slang Reference Manual (CMUISEI-91-UG-5)

Motif Widget Set, XmForm

marginHeight short

marginWidth short

noResize Boolean

resizePolicy unsigned-char

shadowType unsignedchar

stringDirection StringDirection

textFontList FontList

textTranslations Translations

unmapCallback CallbackList

Manager Resource Set

Name X Type Default

bottomShadowColor Pixel

bottomiShadowP i~cap Pixxnap UNSPECIFID.Yixmap

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightPiaap Pixinap

shadowThicknes s short

topShadowColor Pixel

topShadowPi~aap Pixmnap UNSPECLFziEIPixmap

unit Type uflsigfedchar PIXELS

userData caddr-t NULL

Composite Resource Set
Name X Typf

insertPosition OrderProc

Core Resource Set
Name X Type Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPixnap Pixinap

Serpent: Slang Reference Manual (CMUISEI-91-UG-S) 241

Motif Widget Set, Xmrorm

borderColor Pixel

borderPixmap Pixmap

borderWidth Dimension 1

colormap Colormap

depth Cardinal

destroyCailback CallbackList

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

width Dimension

x Position

y Position

translations Translations: Shift<BtnlDown>,<BtnlUp>: pick()
<BtnlDown>,<BtnlUp>: select()
Shift<Btn2Down>,<Btn2Motion>: resize0
Shift<Btm2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0

Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize0
Shift<Btn3Down>,<Btn3Motion>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods

Name Parameter Description

move X, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the

dialogue in response to a user event (typically a shifted
BtnlDown). 0

242 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XnFrame

XmFrame

Serpent Name XmFrame

includefile: Xm/Frame.h
class: FrameWidgetClass

widget-type: widget

Description The XmFrame widget is a very simple manager used to enclose a

single child in a border drawn by XmFrame. It uses the Manager class
resources to draw borders and performs geometry management such

that its size will always match its child's size plus the margins defined
for it.

Attributes
Serpent

Name XIype Default

allowUserMove Boolean false

allowUserResize Boolean false

met hod MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

Frame
Name X Typ

marginWidth short

marginHeight short

shadowType unsigned_char

Serpenr: Slang Reference Manual (CMU/SEI-91-UG-5) 243

Motif Widget Set, XniFrame

Resource Set
Name X Type Default

bottomShadowColor Pixel

bottomShadowPi~aap Pixmap UNSPECFIEDPixmaap

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightPixmap Pixniap

shadowThickness short

topShadowColor Pixel

top ShadowP ixmtap Pixmap UNSP'1ECFIEDPixmap

uni:-Type unsigned-char PIXELS

userData caddr-t NULL

Composite Resource Set
Name X Typg

insertPosition OrderProc:

Core Resource Set
Name X Type Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPi.anap Pixinp

borderColor Pixel

borderPixmap Pixinap

borderWidth Dimension

colormap Colormap

depth Cardinal

destroyCailback CallbackList

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

244 Serpent. Slang keference Manual (CMUISEI-91-UG-5)

Motif Widget Set, XmFrame

width Dimension

x Position

y Position

translations Translations: S1Lft<BBlDown>,<BtnlUp>: picko
Shift-,m2Down>,<Btn2Motion>: resizeO
Shift<Bta2Down>,<Btn2Motion>,<Leave>,<Btn2Up>:
resize0

Shift<Bm2Down>,<Btn2Motion>,<Bm2Up>: resize0
Shift<Bm3Dowrn>,<Btn3Motion>: moveo
Shift<Bm3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btm3Down>,<Btn3Motion>,<Btn3Up>:move0
<EnterWindow>: Entero
<Focusln>: Focusln0
<BtnlDown>: Arm() <BtnlUp>: Activateo

Methods

Move Parameters Description

move X, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BmlDown).

Serpent: Slang Reference Marual (CMU/SEI-91-UG-5) 245

Motif Widget Set, XmInformationDialog

XmInformationDialog
0

Serpent Name XmInformationDialog

ir.zl'.ade_ ile: Xm/MessageB.h
class: =rMessageBoxWidgetClass
widget-type: widget

Description The XmInformationDialog widget is a XMessageBox created

with a convenience routine. This dialogue is used to provide a user

with information. The dialogue box comes with three buttons: OK,

Cancel, and Help. The default symbol is a lower case i.

Attributes

Serpent

Name X TYpe Default

allowUserMove Boolean false

allowUserResize Boolean false

deactivate Boolean false

isCornposite Boolean false

met hod MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

Me s sageBox CallbackList

cancelLabelString String

defaultButtonType unsignedchar 0
dialogType unsignedchar

helpLabelString String

messageAlignment unsignedchar

messageString String •

246 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, Xmlnf ormationDialog

minimizeButtons Boolean

ok~allback CallbackList

okLabelString String

syxnboli ~rap Pixmap

BulletinBoard Resource ;et
Name X iyjp

allowoverlap Boolean

autoUrimanage Boolean

buttonFontList FontList

cancelButton Widget

defaultButton Widget

defaultPosition Boolean

dialogStyle unsignedCchar

dialogTitle String

focusCallback CallbackList

labelFontList FontList

mapCallback CallbackList

margin-teight short

marainWidth short

noResize Boolean

resizePolicy unsignedchar

shadowType unsigled&char

stringDirection StringDirection

textFontList FontList

textTranslations Translations

uunapCallback CallbackList

Manager Resource Set
Name X Type Default

bottomShadowColor Pixel

bot tomShadowP i~~ap Pixinap UNSPECIFIEDPIXMAP

foreground Pixel

helpCallback CallbackList

Serpent. Slang Reference Manual (CMUISEI-91-UG-5) 247

Motif Widget Set, XmInformat ionDialog

highlightColor Pixel black

highlightPixmap Pixmap

shadowThickness short

topShadowColor Pixel

topShadowPianap Pixmap UNSPECIFIEDPIXMAP

unitType unsignedchar PIXELS

userData caddr_1 0

Composite Resource Set
Name

insertPosition OrderProc

Core Resource Set
Name X Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPixmap Pixmap

borderColor Pixel

borderPixmap Pixmap

borderWidth Dimension

colormap Colormap

depth Cardinal

destroyCallback CallbackList

height Dimension

mappedWhernManaged Boolean

screen Screen

ser.sitive Boolean

width Dimension

x Position

y Position

translations Translations: <EnterWindow>: Entero
<Focusln>: Focusln0
Shift<BtnlDown>,<BtnlUp>: picko
<BtnlDown>: Arm()

248 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmInformationDialog

<Btnl Up>: Activateo
<Key>Fl: Helpo
<Key>Return: Return()
<Key>KP_Enter: Return()
Shift<Btn2Down>,<Btn2Motion>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0
Shift<Bta2Down>,<Btn2Motion>,<Btn2Up>: resize(
Shift<B m3Down>,<Btn3Motion>: moveo
Shift<Bm3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods

Name X Type Default

move X, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BmlDown).

notify This method is sent to the dialogue in response to a user
event (typically a BtnlDown).

Serpent: Slang Reference Manual (CMUISEI-91-UG-5) 249

Motif Widget Set, XrLabel 0

XmLabel

Serpent Name XmLabel

includefile: Xm/Label.h

class: LabelWidgetClass

widget-type: widget

Description The XmLabel widget is an instantiable widget and is also used as a

superclass for other button widgets, such as PushButton and
ToggleButton. The Xm.Label widget does not accept any button or

key input, and the help callback is the only callback defined. XmLabe i

also receives enter and leave events. It can contain either text or a
Pixmap; its text is a compound string.

Attributes

Serpent

Name X Type Default

allowUserMove Boolean false

allowUserResize Boolean false

met hod MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

Label Resource Set

Name X YpLe

accelerator String

acceleratorText Sting

alignment unsignedchar

fontList FontList 9

250 Serpent Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XniLabel

labellnsensitivePi.-anap Pixniap

labelPimaap Pixmap

labeiString String

labelType unsigned-char

marginBotton short

marginHeight short

marginLeft short

marginRight short

inarginTop short

marginWidth short

mnemonic char

recomputeSize Boolean

stringDirection StringDirection

Primitive Resource Set
Name X Type Default

bottomShadowColor Pixel

bottomShadowP ixaap Pixmap UNSPECWIEEPixniap

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightOnEnter Boolean false

highlightPixanap Pixnmap

highlightmhickness short 0

shadowThickness short 2

topShadowColor Pixel

topShadow~ixanap Pixmap UNSPECWIEED-Pixmap

traversalOn Boolean false

unitType unsigned-char PIXELS

userData caddr-t NULL

Core Resource Set
accelerators Accelerators

ancestorSensitive Boolean

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 251

Motif Widget Set, XmLabel

background Pixel

backgroundPixanap Pixmap

borderColor Pixel

borderPixmnap Pixmap

borderWidth Dimension I

colormap Colormap

depth Cardinal
destroyCallback CallbackList

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

width Dimension

X Position

y Position 0
translations Translations: Shift<BtnlDown>,<BtnlUp>: pick()

Shift<Bm2Down>,<Btn2Motion>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize(
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Bma3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveo
<EnterWindow>: Enter()
<LeaveWindow>: Leave()

Methods

Name Parameter Description

move X, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, heir>t This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

0
pick selectedX, selectedY This method allows the user to select a point on the widget

with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

252 Serpent. Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XList

XmList

Serpent Name XrnList

includefile: Xm/List.h
class: ListWidgetClass

widget-type: widget

Description The XmList widget allows a user to select one or more items from
a group of choices. Items are selected from the list in a variety of ways,
with both the pointer and the keyboard. XmList operates on an array
of strings that are defined by the application. Each string becomes an
item in xuList, with the first string becoming the item in position 1,
the second string becoming the item in position 2, and so on.

Attributes

Serpent

Name X TYp Default

allowUserMove Boolean false

allowUserResize Boolean false

method MethodName parentWidget

selectedX Position 0

selectedY Position 0

widget int

List
Name XTyp

automaticSelection Boolean

browseSelectionCallback CallbackList

de faultAct ionCallback CallbackList

doubleClickInterval int

ext e nde dSe 1 e ct ionCa lbackCbackist

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 253

Motif Widget Set, xnLi st

font List FontList

itemCount int

items StringTable

listMarginHeight Dimension

listMarginWidth Dimension

listSpacing short

mult iple Se lect ionCa. lbackCalbackList

selectedltemCount ilt

selectedltems StringTable

selectionPolicy unsigned-char

singleSelectionCallback CallbackList

stringDirection StringDirection

visibleltemCount lflt

ScrolledList
Namne X Typ

horizontalScrollBar Widget

listSizePolicy unsigned_char

scrollBarDisplayPolicy unsigned-char0

scrollBarPlacement unsigned-char

s crolledWindowmargin~eightDilension

scrolledwindowMarginwidthDimension

spacing Dimension

verticalScrollBar Widget

Primitive Resource Set
Name X Type Default

bottomShadowColor Pixel

bottomShadowPixanap Pixmap UNSPECIFIEDPixmap

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightOnEnter Boolean false

highlightPixnip Pixmap

254 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, xrnList

highlightThickness short 0

shadowThickness short 2

topShadowColor Pixel

topShadowPiatap Pixmap UNSPECWIED..ixmap

traversalOn Boolean false

unit Type unsigned~char PIXELS

userData caddr-t NULL

Core Resource Set
Namne X Type Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

background? i~cap Pixmap

borderColor Pixel

borderPi~cap Pixmap

borderWidth Dimension1

colormap Colormap

depth Cardinal

destroyCallback CailbackList

height Dimension

mappedWheniManaged Boolean

screen Screen

sensitive Boolean

width Dimension

X Position

y Position

translations Translations: S'hift<Btnl Down>,<Btnl Up>: picko
Shift<Bm.2Down>,<Btn2Motion>: resize()
Shift<Bmn2Down>,<Btn2Motion>,<Leave>,<Btrn2Up>: resize()
Shift<Bm2Down>,<Bl2Motion>,<Btn2Up>: resize()
Shift<.Bm3Down>,<Bmn3Motion>: moveo
Shifv<Bt3Down>,<Btn3Motion>,<Leave>,<Btn3Up>:

move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>:move()
Button I <Motion>: ListButtonMotion()
Shift Ctrl -Meta<Btnl Down>: ListShiftCtrlSelect()

Serpenz: Slang Reference Manual (CMU/SEI-91-UG-5) 255

Motif Widget Set, xList

Shift Ctrl -Meta<BtnlUp>: ListShift~trlUnSelect()
Shift Ctrl -Meta<KeyDown>space: ListKbdShift~trlSelect()
Shift Ctrl -Meta<KeyUp>space: ListKbdShift~trlUnSelect()
Shift Ctrl -Meta<KeyDowa>Select: ListKbdShiftCtrlSelect()
Shift Gtrl -Meta<zKeyUp>Select: ListKbdShiftCtrlUnSelect()
Shift -Gtrl -Meta<Btnl Down>: ListShiftSelect()
Shift -Ctrl -Meta<BtnlUp>: ListShiftUnSelect()
Shift -Ctrl -Meta<KeyDown>space: ListKbdShiftSelect()
Shift -Ctrl -Meta<KeyUp>space: ListKbdShiftUnSelect()0
Shift -Gtrl -Meta<KeyDown>Select: ListKbdShiftSelect()
Shift-Ctri -Meta<KeyUp>Select: ListKbdShiftUnSelect()
Girl -Shift -Meta<Btnl Down>: ListCtrlSelect()
Girl -Shift -Meta<BtnlUp>: List~trlUnSelect()
Gtrl -Shift -Meta<KeyDown>space: ListKbd~trlSelect()
Gtrl -Shift -Meta<KeyUp>space: ListKbdCtrlUnSelect()
Girl -Shift -Meta<KeyDown>Select: ListKbd~trlSelect()
Girl -Shift -Meta<KeyUp>Select: ListKbdCtrlUnSelect()
-Shift -Girl -Meta<Btnl1Down>: ListElementSelect()
-Shift -Girl -Meta<BtnlUp>: ListElementUnSelect()
-Shift -Girl -Meta<KeyDown>space: ListKbdSelect()
-Shift -Girl -Meta<KeyUp>space: ListKbdUnSelect()
-Shift -Girl -Meta<KeyDown>Select: ListKbdSelect()
-Shift -Girl -Meta<KeyUp>Select: ListKbdUnSelect()
Shift Girl -Meta<Key>Up: ListShift~rPrevElement()
Shift Girl -Meta<Key>Down: ListShift~trINextElement()
Shift -Girl -Meta<Key>Up: ListShiftiPrevElement() 0
Shift -Girl -Meta<Key>Down: ListShiftNextElement()
-Shift Girl -Meta<Key>Up: List~triPrevElement()
-Shift Girl -Meta<Key>Down: List~trlNextElement()
-Shift -Girl -Meta<Key>Up: ListPrevElement()
-Shift -Girl -Meta<Key>Down: ListNextElement()0
<Enter>: ListEnter()
<Leave>: ListLeave()
<Focusin>: ListFocusln()
<FocusOut>: ListFocusOut()
<Unmap>: PrimitiveUnmap()
Shift<Key>Tab: PrimitivePrevTabGroup() 0
Girk<Kev>Tab: PrimitiveNextTabGroup()
<Key>Tab: PrimitiveNextTabGroup()
<Key>Home: PrimitiveTraverseHome()

Methods

Namne Paramneter Description

move X, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

256 Serpent: Slang Reference Manual (CMUJ/SE-91-IUG-5)

Motif Widget Set, xmList

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BmlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 257

Motif Widget Set, XmMainWindow 0

XmMainWindow

Serpent Name xaMainWindow

includefile: Xm/MainW.h
class: MainWindowWidgetClass

widget-type: widget
checkroutine: checkMainW

Description The XmMainWindow widget provides a standard layout for the
primary window of an application. This layout includes an MenuBar,

an CommandWindow, a work region, and ScrollBars. Any or all of
these areas are opt trnal. The work region and prog in the
XmMainWindow behave identically to the work region and
ScrollBars in the ScrolledWindow widget. (The user can think of
the XmMainWindow as an extended ScrolledWindow with an
optional MenuBar and optional CozmmandWindow.) •

Attributes
Serpent

Name X jye Default

allowUserMove Boolean false

allowUserResize Boolean false

met hod MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

MainWindow
Name

commandWindow Widget

258 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XxnMainWindow

mainwinciowmarginHeight Dimension

mainWindowMar. LnWidth Dimension

menuBar Widget

showSeparator Boolean

Scrolled Window Resource Set
Name Xjp

clipwindow Widget

hor4izonta1ScrcliBar Wiaget

s.z.rollBarDisplayPoli'y unsigned-char

scrollBarPlacenent unsigned-char

scrolledWi ndowMari.HightDmelsion

Sc rol ledWinciowMargi.nWidt hDimleflsiofl

scrollingPolicy unsigned-char

spacing n

verticalScrollBar Widget

visualPolicy unsignedschar

workWindow Widget

Manager Resource Set
Name X ype Default

bottomShadowColor Pixel

bottomShadowPi~aap Pixmap UNSPECIHTEDPixmap

fo~reground Pixel

helpCallback CallbackList

highlightColor Pixel black

hi ahiightPi~aap Pixmap

shadowThicknejs short

top~hadowColor Pixel

t opS hadowPixrn=ap Pixiiap UNSPECIFIEDPixmap

unitType unsigned-char PIXELS

userData caddr-t NULL

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 259

Motif Widget Set, XmMainWindow

Composite Resource Set
Name X T~ype Default

insertPosition OrderProc

Core Resource Set
Name X Type Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPianap Pixmap

borderColor Pixel

border~i~unap Pixmap

.IorderWidth Dimension

colorinap Colormap

depth Cardinal

destroyCaliback CallbackList

heiaht Dimension

mappedWheniManaged Boolean

screen Screen

sensitive Boolean

width Dimension

X Position

y ~Position

Trans lat ions Translations Shift<BtnlDown>,<BtnlUp>: picko
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<B tn2Down>,<B tn2)Motion>,<Leave>,<Btn2Up>: resize()
Shift<Bm2-Down>,<Bm2-Motion>,<Btn2Up>: resize()0
Shiit'B3Down>,<Bmn3Motion>: move()
Shift<Bmn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveo

Methods 0
Namne Parameters Description

move x, y This method allows the user to move the widget with the
mouse and se-nds the widget's new~ x and y location to the
dialogue.

260 Srrpeni Slang Reference Manual (CMU/SEI-91 -UG-5)

Motif Widget Set, XmMainWindow

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BmlDown).

Serpent: Slang Reference Manual (CMU/SEI-91 -UG-5) 261

Motif Widget Set, XmMenubar

XmMenubar

Serpent Name XmMenubar

includefile: Xm/RowColumn.h

class: RowColumnWidgetClass

widget-type: widget

Description The XmMenuBar widget is a specially configured RowColumn widget

created with a convenience routine. It is used to build a pulldown
menu.

Attributes

Serpent

Name X Default

allowUserMove Boolean false

allowUserResize Boolean false

met hod MethodName

parent Widget

selectedX Position 0

seleotedY Position 0

widget int

RowColumn

Name XType

adjustLast Boolean

adjustMargin Boolean

entryAlignment unsignedchar

ent-yBorder short

entryCaliback CallbackList

entryClass WidgetClass

262 Serpent Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XrnMenubar

isAligned Boolean

isHomogeneous Boolean

labelString String

mapCallback CallbackList

marginHeight Dimension

marginWidth Dimension

menuAccelerdtor String

menuHelpWidget Widget

menuHistory Widget

mnemonic char

numColumns short

orientation unsigned-char

packing unsigned-char

popupEnabled Boolean

radioAlwaysOne Boolean

radioBehavior Boolean

resizeHeight Boolean

resizeWidth Boolean

r owColumnType unsigned-char

spacing short

subMenuld Widget

unmapCallback CallbackList

whichButton UflSiflned_int

RowColumn Special Menu

Name XTyM

menuCursor String

Manager Resource Set

Name XT)M Default

bottomShadowColor Pixel

bottomShadowPianap Pixmap UNSPECIFIEDPixmap

foreground Pixel

helpCallback CallbackList

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 263

Motif Widget Set, XmMenubar

highlightColor Pixel black

highlightPi.-anap Pixmap

shadowThickness short

topShadowColor Pixel

topShadowPi.,anap Pixmap UNSPECIFIDPixmap

unit Type unsigned-char PIXELS

userData caddr- NULL

Composite Resource Set
Namne X Type

insertPosition OrderProc0

Core Resource Set
Name XT Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPiyanap Pixmap

borderColor Pixel

borderPi~anap Pixmap

borderWidth Dimension1

colormap Colormap

depth Cardinal

destroyCallback CallbackList

height Dimension

mappedWheniManaged Boolean

screen Screen

sensitive Boolean

width Dimension

x Position

y Position

Translations Translations <Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion.>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: rnove()6

264 Serpent -Slang Reference Manual (CMU/SEI.91-UG-5)

Motif Widget Set, XmMenubar

Shift<Bm3Down>,<Bm3Motion>,<Bm3Up>: moveo

Methods
Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BmlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 265

Motif Widget Set, XmMenuShell

XmMenuShell

Serpent Name XmMenuSheli.

include-file: Xm/MenuShell.h
class: menuShellWidgetClass

widget-type: override

Description The XmMenuShell widget is a custom OverrideShell widget. An
OverrideShell widget bypasses the window manager when

displaying itself. It is designed specifically to contain Popup or
Puildown MenuPanes.

Attributes
Serpent

Namne X !Tgp Default

allowUserMove Boolean false

allowUserResize Boolean falsu

parent Widget

method MethodName

Shell
Name X Type Default

Name

allowShellResize Boolean

createPopupChildProc Boolean

geometry caddrt

overrideRedirect Boolean0

popdownCallback CallbackList

popupCallback CallbackList

saveUnder Boolean

266 Serpen': Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XrnMenuShell

Composite Resource Set

NameX y

insertPosition OrderProc

Core Resource Set

Name X y Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPi.cnap Pixmap

borderColor Pixel

borde rP imap Pixmap

borderWidth Dimension 1

colormap Colormap

depth Cardinal

destroyCailback CallbackList

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

width Dimension

X Position

y Position

translations Translations: Shift<Btn2Down>,<Btn2Motion>:resize)
Shift<Btr2Dow>,<Bt2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btm2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<BtnL3Dowxn> ,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,.eLeave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveo
<BtnDown>: ClearTraversal()
<Key>Escape: MenuShelPopdownDone() <BtnUp>:
MenuShellPopdownDone)

Serpent. Slang Reference Manual (CMU/SEI-91-UG-S) 267

Motif Widget Set, XmMenuShell 0

Methods

Name Parameters Description

move X, y This method allows the user to move the widget with the 0
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

0

0

0

0

0

0

268 Serpemt Slang Reference Manual (CMUJ/SEI-91-UG-5)

0

Motif Widget Set, XmMessageBox

XmMessageBox

Serpent Name XmMessageBox

includefile: Xm/MessageB.h

class: MessageBoxWidgetClass

widget-type: widget

Description The xmMessageBox widget is a dialogue class widget used for

creating simple message dialogues. Convenience dialogues based on
XrrMessageBox are provided for several common interaction tasks,
including giving information, asking questions, and reporting errors.

Attributes
Serpent

Name Xiye Default

allowUserMove Boolean false

allowUserResize Boolean false

isComposite Boolean false

method MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

MessageBox
Name XTpe

cancelCallback CallbackList

cancelLabelString String

defaultButtonType unsigned-char

dialogType unsigned char

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 269

Motif Widget Set, XxnMessageBox

helpLabelString String

mes sageAliginent unsigned-char

InessageString String

minimizeButtons Boolean

okCallback CallbackList

okLabelString String

symnbolP L'aap Pixmap

BulletinBoard Resource Set
Name X Type

aliow~verlap Boolean

autoUnmanage Boolean

buttonFontList FontList

cancelButton Widget

defaultButton Widget0

defaultPosition Boolean

dialogStyle unsigned-char

dialogTitle String

focusCallback tCallbackList

labelFontList FontList

rnapCallback CallbackList

marginHeight short

marginWidth short

noResize Boolean

resizePolicy unsigned_char

shadowType unsigned-Char

stringDirection StringDirection

textFontList FontList

textTranslations Translations

unxnapCallback CallbackList

Manager Resource Set
Name XTmDefault

bottomShadowColor Pixel

270 Serpent: Slang Reference Manu*al (CMU/SEI-91-UG-5)

Motif Widget Set, XrnMessageBox

bottomS hadowP imnap Pixmap UNSPECIFIED..Yixmap

foreground Pixel

help~allback CallbackList

highlightColor Pixel black

highlightP i~aap Pixmap

shadowThickness short

topShadowColor Pixel

topShadowPianap Pixinap UNSPECIFID.Yixmap

unitType unsigned-char FIXELS

userData caddr-t NULL

Composite Resource Set
Name X Type

insertPosition OrderProc

Core Resource Set

Name X Type Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

background~i-cnap Pixmap

borderColor Pixel

borderPi~aap Pixinap

borderWidth Dimension

colormap Colorniap

depth Cardinal

destroyCallback CallbackList

height Dimension

mappedWheniManaged Boolean

screen Screen

sensitive Boolean

width Dimension

X Position

y Position

Serpemi: Slang Reference Manual (CMUSEI-91-UG-S) 271

Motif Widget Set, XmMessageBox 0

translations Translations: <EnterWindow>:Enter0
<Focusln>: Focusln0
<BtnlDown>: Arm()
<BtnlUp>: Activate()
<Key>Fl: Help()
<Key>Return: Return()
<Key>KP_Enter: Return()
Shift<Btn1Down>,<BtnlUp>: pick()
Shift<Bm2Down>,<Btn2Motion>: resizeO
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Bm2Up>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize(
Shift<Btn3Down>,<Btn3Motion>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods

Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (tqpically a shifted
BmlDown).

272 Serpent. Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, xmMessageDialog

XmMessageDialog

Serpent Name XmMessageDialog

includefile Xm/MessageB.h

class: -mMessageBoYWidgetC1ass
widget-type: widget

Description The XmMessageDialog widget is aMessageBox created with a

convenience routine. This convenience routine creates a Me S s ageBox

parented to a dialogue shell.

Attributes
Serpent

Name X Type Default

al owUserMove Boolean false

allowUserResize Boolean false

deactivate Boolean false

sCompoosite Boolean false

method MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget Widget

MessageBox CallbackList

cancelLabelStrina String

defaultButtonType unsigned-char

di alogType unsigned-char

helpLabelString String

me s sageAlignment unsigned-char

messageString String

minimizeButtons Boolean

Serpent: Slarg Reference Manual (CMU/SEI-91-UG-5) 273

Motif Widget Set, XmMessageDialog

okCallback CallbackList

okLabelString String

symnbolPi~zap Pixmap

BulletinBoard Resource Set
Name X Type

allow~verlap Booleani

autoUnmanage Boolean

buttonFontList FontList

can ce lButt on Widget

defaultButton Widget

defaultPosition Boolean

dialogStyle unsigned-char

diaiogTitle String

focusCallback CallbackList

labelFontList FontList

rnapCallback CallbackList

marginHeight short

marginWidth short

noResize Boolean

resizePolicy unsigne-char

shadowType unsigned-char

stringDirection StringDirection

textFontList FontList

textTranslations Translations

urunapCallback CallbackList

Manager Resource Set
Name X T-j:pg Default

bottornShadowColor Pixel

bottornShadow~i~aap Pixxnap UNSPECIFIEDPIXMAP

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

274 Serpent: Slang Reference Manual (CMU/SEI-91-UG-S)

* Motif Widget Set, XmMessageDialog

highlightPixanap Pixmap

shadowThickness short

*topShadowColor Pixel

topShadow~ixanap Pixmap UNSPECIFIEDP1XMAP

unit Type unsigned -char PIXELS

userData cadclr_t NULL

Composite Resource Set
Name X Typg

insertPosition OrderProc

Core Resource Set
Name X jv Default

accelerators Accelerators

ancestorSensitive Boolean

b)ackground Pixe;

backgroundF'ixaap Pixmap

borderColor Pixel

borderPiaap Pixniap

borderWidth DimensionI

colormap Colormap

depth Cardinal

destroyCallback CAllbackList

height Dimension

mappedWhentanaged Boolean

screen Screen

sensitive Boolean

width Dimension

X Position

y Position

translations Translations: EnterWindow>:Enter()
<Focusn': Focusln()
ShiftKBtnlDown>,<Bml Up>: picko
<BtulDown>: Arm()
<BtnlUp>: Activate()

0 <Key> Fl: Help()

Serpent: Slang Reference Manual (CMUISEI-91-UG-5) 275

Motif Widget Set, XmMessageDialog

<Key>Return: Return()
<Key>KPEnter: Return()
Shift<Btm2Down>,<Btn2Motion>: resize0
Shift<Btn2Down>,<Bm2Motion>,<Leave>,<Btn2Up>: resize0
Shift<Btm2Down>,<Btn2Motion>,<Btn2Up>: resize0
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Bm3Up>: move()

Methods

Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectecK, selectedY This method allows the user to select a point on the widget
with the mouse and sends thz location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

276 Serpent: Slang Reference Manual (CMU/SEI-9) -UG-5)

Motif Widget Set, XmOption

XmOption

Serpent Name XrOpt ion

includefile: Xm/RowColunmn.h
21a-. AOC-- nWagetC1ass

widget-type: widget
convenienceroutine: CreateOptionMenu

Description The Xmopt ion widget provides the application with the means for
obtaining thc widget ID for the internally created
CascadeButtonGadget. Once the application has obtained the
widget ID, it has the ability to adjust the visuals for the

CascadeButtonGadget.

Attributes

Serpent

Name X TYe Default

allowUserMove Boolean false

allowUserResize Boolean false

isComposite Boolean true

manage Boolean true

method MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

RowColumn
Name XTe

adjustLast Boolean

adjustMargin Boolean

Serpent: Slang Reference Manual (CMUiSEI-91-UG-5) 277

Motif Widget Set, xnoption0

ent ryAJ.ignment unsigned-char

entryBorder short

entryCallback CalibackList0

ent ryClas s WidgetClass

isAligned Boolean

isHomogeneous Boolean

labelString String

mapCaliback CallbackList

xnarginHeight Dimension

marginWidth Dimension

menuAccelerator String

menuHelpWidget Widget

rnenuHistory Widget

mnemonic char

numColuxnns short

crientation unsigned char

packing unsigned-char

popupEnabled Boolean

radioAlwaysOne Boolean0

radioBehavior Boolean

resizeHeight Boolean

resizeWidth Boolean

rowColurnnType unsigned-char

spacing short

subMenuld Widget

unmapCallback CallbackList

whichButton unsigned-int

RowColumn Special Menu
Name m

menuCursor String

278 Serpent: Slang Reference Manual(CMU/SEI-91.UG-5)

..

* Motif Widget Set, XmOption

Manager Resource Set

Name X Type Default

bottomShadowColor Pixel

bottomShadowPi-nap Pixmap UNSPECIFIED.Yixmnap

foreground Pixel

helpCallback CallbackList

0highlightColor Pixel black

highlightPiaap Pixmnap

shadowThickness short

topShadowColor Pixel

topShadowPi~aap Pixmap UNSPECWID-ixap

unitType unsigned_char PIXELS

userData caddr-t NUJLL

Composite Resource Set

Name X j322

insertPosition OrderProc

Core Resource Set

Name X Typeg Detault

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPixmrap Pixmap

borderColor Pixel

* borderPixanap Pixmap

borderWidth Dimension1

colormap Colormap

depth Cardinal

*destroyCaliback CallbackList

height Dimension

rnappedWheniManaged Boolean

screen Screen

sensitive Boolean

Serpent: Slang Reference Manual (CMU/SEI-91-UG-S) 279

Motif Widget Set, XmOpt ion

width Dimension

x Position

y Position 0

translations Translations: Shift<BtnlDown>,<Btnl Up>: picko
Shift<Btn2Down>,<Btn2Motion>: resize(
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Bm2Up>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resizeO
Shift<Btm3Down>,<Btn3Motion>: moveo 0
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveo

Methods •
Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the 0
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

280 Serpent: Slang Reference Manual (CMUfSEI-91-UG-5)

Motif Widget Set, XmPanedWindow

XmPanedWindow

Serpent Name XrmPanedWindow

includefile: Xm/PanedW.h
class: PanedWindowWidgetClass
widget-type: widget

Description The XmPanedWindow widget is a composite widget that lays out

children in a vertically tiled format. Children appear in top-to-bottom
fashion, with the child that is inserted first appearing at the top of
XmPanedWindow and the child inserted last appearing at the bottom.
XmPanedWindow will grow to match the width of its widest child and
all other children are forced to this width. The height of
XmPanedWindow will be equal to the sum of the heights of all of its

children, the spacing between them, and the size of the top and bottom
margins.

Attributes
Serpent

Name X Type Default

allowUserMove Boolean false

allowUserResize Boolean false

met hod MethodName

parent Widget

selectedX Position 0

seleotedY Position 0

widget int

PanedWindow

Name XType

marginHeight short

Serpent. Slang Reference Manual (CMU/SEI-91-UG-5) 281

Motif Widget Set, XxPanedWindow

marginWidth short

refigureMode Boolean

sashHeight Dimension

sashlndent Position

sashShadowThickness int

sashWidth Dimension

separatorOn Boolean0

spacing ilt

PanedWindow Constraint

Namne X vpe

allowResize Boolean

maximum int

minimum int

skipAdjust Boolean

Manager Resource Set
Name X y !Default

bottomShadowColor Pixel

nottornhacoweixcnap PIXinap UNSPFECYIE7D-TAixmnaP

foreground Pixel

helpCallback CallbackList

Kih~glightColor Pixel black

highlightPixanap Pixmap

shadowThickness short

topShadowColor Pixel

topShadowPixanap Pixmap UNSPECIFIDPixmap

unit Type unsigned-char PIXELS

userData caddr-t INULL

Core Resource Set
Namne X Type Default

accelerators Accelerators

ancestorSensitive Booleani

282 Serpent: Slang Reference Manual (CMUISEI-91-UG-5)

* Motif Widget Set, XmPanedWindow

background Pixel

backgroundP i mnap Pixrnap

* borderColor Pixel

borderPi:-nap Pixmap

borderWidth Dimension

colorrap Colormap

* depth Cardinal

dest roy~a 91- ba _k CallbackList

heiaht Dimension

mappedWhenrManaged Boolean

* screen Screen

sensitirve Boolean

wlzlth Dimension

X Position

* y Position

transia: ions Translations: Shift<BtnlDown>,<BtnlUp>: pick()
Shift<Bi i2Down><Btm2Motion>: resize(
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0
Shift<Btm2Down>,<Btm2Motion>,<Btn2Up>: resize0

oShift<Btn3Down>,<Btn3Motion>" move()
Shift<Btn3Down>,<Btm3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btm3Down>,<Btn3Motion>,<Bm3 Up>: move()
<BtnlV)own>: arm()
<BtnlUp>: activate()

Methods

Name Parameters DescpMion

move x, y This method allows the user to move the widget with the
mouse ard sends the widget's new x and y location to the
dialogue.

resize x. y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

Fi ck selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the lucation of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 283

Motif Widget S-,, XmPopup

XmPopup

Serpent Name Xmrropup

includefile: Xm/RowColumn.h
class: RowColumnWidaetClass

widgetitype: widget

Description xmpopup is a convenience routine which creates a RowColumn
widget configured as an xmPopup menu.

Attributes

Serpent

Name X Type Default

a llowUserMove Boolean false

a77owUserResize Boolean false

isComposite Boolean true

manage Boolean false

met hod MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

RowColumn
Name X Type

adjust-L st Boolean

adjustMargin Boolean

entryAlignment unsignedchar

t, t ryBorder short

entryCalibacK CallbackList

284 Serpcnt Slang Reference Manual (CMU/SEI-91-UG-5)

* Motif Widget Set. xxniopup

ent ryCias s WidgetClass

4sAlianed Boolean

* is Hoioeneous Boolean

labe1String String

rapiallback CallbackList

rrarainHeiaht Dimension

r- ma r -,nw i dth Dimension

mnenliAoceleratcr String

menuneloWidget Widget

menuHistory Widget

ran em o r. _4c char

numLn 7 -ILurn s short

orientat-ion unsigned-char

paz king unsigned-char

*popupEnab'ied Boolean

radioAlwaysone Boolean

radio~ehavior Boolean

rt::izeHeight Boolean

0resizeWidt~h Boolean

rowCoiuxnnType unsigned-Char

spacing short

subMenuld Widget

*unimapCallback CallbackList

whichButton unsignedint

RowColumnn Special Menu
*Name X Typ

menu~ursor String

Manager Resource Set
Name X) Default

bottomShadowCoior Pixel

bottom~hadowPianap Pixmap UNSPECLFID-Pixmap

foreground Pixel

Serpent: Slang Reference Manual (CMIUISEI-91-UG-5) 285

Motif Widget Set, xrnPopup

helpCallback CallbackList

highlightColor Pixel black

highlightPi.=nap Pixmap

shadowThickness short

topShad-wColor Pixel

topShadowPi.nap Pixmap UNSPECIFIED_Pixmap

unitType unsigned-char PIXELS

userData caddrt NULL

Composite Resource Set

Name X •

insertPosition OrderProc

Core Resource Set

Name X T3pe Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPi.znap Pixmap

borderColor Pixel

borderPixmap Pixmap

borderWidth Dimension I

colormap Colormap

depth Cardinal

destroyCailback CallbackList

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

width Dimension

x Position

y Position

translations Translations: Shift<BtnlDown>,<BtnlUp>: pick()
Shift<Btn2Down>,<Btn2Motion>: resize0

286 Serpent. Slang Reference Manual (CMU/SEI-91-UG-5)

...

Motif Widget Set, XmPopup

Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0
Shift<Bm2Downw-,<Btn2Motion>,<Bm2Up>: resize(
Shift<Btn3Down>,<Bm3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move0
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveo

Methods
Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BmlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 287

Motif Widget Set, XmPulldown

XmPulldown

Serpent Name XmP ulldown

includefile: /RowColumn.h

class: RowColumnnWidgetClass

widget-type: widget

Description The XmPulldown widget is a convenience routine that creates a

RowColumn widget configured as an Popup menu.

Attributes

Serpent

Name X Default

allowUserMove Boolean false

allowUserResize Boolean false

isComposite Boolean true

manage Boolean false

method MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

RowColumn

Name X T.yn

adjustLast Boolean

adjustMargin Boolean

ent ryAlignment unsigned_char

entryBorder short

entryCaliback CallbackList

288 Serpen." Slang Reference Manual (CMU/SEI-91-UG-5)

* Motif Widget Set, XxnPulldown

entryClass WidgetClass

isAligned Boolean

* is~oinogeneous Boolean

labelString String

mapCallback CallbackList

marginHeight Dimension

* ma'-ginWidth Dimension

menu-Accelerator String

menuHelpWidget Widget

menuHist cry Widget

mnemonic char

nuxnColumns short

orientation unsigned_char

packing unsigned_char

*popupEnabled Boolean

radioAlwaysOne Boolean

radioBehavior Boolean

resizeHeight Boolean

*resizeWidth Boolean

rowColuxnnType unsigned~char

spacing short

subMenuld Widget

* unxnapCallback CallbackList

whichButton unsignedit

RowColumnn Special Menu
*Name M

menuCursor String

Manager Resource Set
Name X TyMp Default

bottomShadowColor Pixel

bottomShadowPixanap Pixmap UNSPECLFIED..Yixmap

foreground Pixel

Serpent. Slang Reference Manual (CMU/SEI-91-UG-5) 289

Motif Widget Set, XmPulldown

helpCallback CallbackList

highlightColor Pixel black

highlightrixmap Pixmap

shadowThickness short

topShadowColor Pixel

topS hadowP i.anap Pixmap UNSPECIFIDPixmap

unitType unsigned~char PDXELS

userData caddr-t NULL

Composite Resource Set
Name XTT

insertPosition OrderProc

Core Resource Set
Name X T)Tpe Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

background? i~aap Pixinap

borderColor Pixel

borderPixanap Pixmap

borderWidth Dimension1

colormap Colormap

depth Cardinal

destroyCallback CallbackList

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

width Dimension

7. Position

y Position

trans lat ions Translations: Shift<BtnlDown>,<BtnlUp>: pick()
Shift'<Bt2Down>,<Btn2Motion>: resize()
Shift<BtnL2Down>,<Btm2Motion>,<Leave>,<Btn2Up>: resize()0

290 Serpent: Slang Reference Manual (CMUISEI-91-UG-5)

Motif Widget Set, XmPulldown

Shift<Bmi2Down>,<Bm2Motion>,<Btn2Up>: resize0
Shift<Btn3Down>,<Btn3Motion>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveo

Methods
Name Parameters Description

move X, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 291

Motif Widget Set, XmPushButton 0

XmPushButton

Serpent Name XmPushButton

includefile: /PushB.h
class: PushButtonWidgetClass
widget-type: widget

Description The XmushButton widget issues commands within an application.

It consists of a text label or Pixmap surrounded by a border shadow.

When XmPushButton is selected, the shadow moves to give the
appearance that it has been pressed in. When XmPushButton is not

selected, the shadow moves to give the appearance that it is out.

Attributes

Serpent

Name X Type Default

after Widget

allowUserMove Boolean

allowUserResize Boolean 0
managedWhenCreated Boolean

method MethodName

parent Widget

selectedX Position 0 0
selectedY Position 0

widget int

PushButton

Name X Typ Default

activateCallback CallbackList Sixcallback

armCallback CallbackList

armColor Pixel

292 Serpent: Slang Refrence Manual (CMU/SEI-91-UG-5)

* Motif Widget Set, XmPushButton

armPaicnap Pixmnap

disarmCallback CallbackList

*fillOnArm Boolean

showAsDe fault short

Label Resource Set

*Name X vpe

accelerator String

acceleratorText String

alignment unsigned_char

fontList FontList

labelinsensitivePixtnap Pixmap

labelPi~cap Pixmap

labeiString String

S labelType unsigned-char

marginBottom short

marginHeight short

marginLeft short

5marginRight short

marginTop short

marginWidth short

innenoni c char

recomputeSize Boolean

stringDirection StringDirection

Primitive Resource Set

Name XDefault

bottornShadowColor Pixel

bottomShadowPixtnap Pixmap UNSPECIFIE-DPixmap

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightOnEnter Boolean false

highlightPixanap Pixmap

Serpent. Slang Reference ManuWl(CMU/SEI-91-UG-5) 293

Motif Widget Set, XrPushButton

highlightThickness short 0

shadowThickness short 2

topShadowColor Pixel

topShadowPixanap Pixmap UNSPECIFIEDPixmap

traversalOn Boolean false

unit Type unsigned-char PIXELS

userData caddr -t NULL

Core Resource Set

Name XymDefault

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPixcnap Pixmap

borderColor Pixel

borderPixanap Pixmap

borderWidth Dimension1

colorrmap Colormap

depth Cardinal

destroyCallback CallbackList

height Dimension

mappedWhenManaged Boolean

screen Screen

sensiti.ve Boolean

width Dimension

X Position

y Position

translations Translations: Shift<BtnlDown>,<BtnlUp>: pick()
<BtnIDown>:Armo<BtmlUp>: ActivateoDisarm()
Shift<Btn.2Down>,<Btn2Motion>: resize()
ShiftkBt2Down>,<Btm2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Bta2Down>,zBtm2Motion>,<Btn2Up>: resize()
Shift<Btn.3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveG
Shift<Btn3Down>,<cBtn3Motion>,<Leave>,<Btn3Up>: moveo
<Key>Return: ArwAndActivate()
<Key>space: ArmAndActivate()

294 Serpent. Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmPushButton

<EnterWindow>: Entero
<LeaveWindow>: Leave()

Methods

Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a BtnlDown).

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 295

Motif Widget Set, XmQuestionDialog 0

XmQuestionDialog

Serpent Name XmQuestionDialog

includefile: Xm/MessageB.h

class: MessageBoxWidgetClass

widget-type: widget

Description The XmQuestionDialog widget is aMessageBox created with a

convenience routine. This dialogue is used to get an answer to a

question from a user. The dialogue box comes with three buttons: OK,

Cancel, and Help. The default symbol is a question mark.

Attributes

Serpent

Name X TYpe Default •

allowUserMove Boolean false

allowUserResize Boolean false

deactivate Boolean false

isComposite Boolean false

met hod MethodName

parent Widget

selectedX Position 0

selectedY Position 0 0
widget int

MessageBox CallbackList

cancelLabelString String

defaultButtonType unsigned_char 9
dialogType unsigned_char

heipLabe1String String

messageAlignment unsignedchar

messageString String

296 Serpen. Slang Reference Manual (CMUSEI-91-UG-5)

* Motif Widget Set, XtQuestionDialog

minimizeButtons Boolean

okCallback CallbackList

*okLabelString String

syrnboiPi~aap Pixmap

BulletinBoard Resource Set

*Name X T)Tg

allow~verlap Boolean

autoUnrnanage Boolean

buttonFontList FontList

cancelButton Widget

defaultButton Widget

defaultPosition Boolean

dialogStyle unsigned -char

dialogTitie String

focusCallback CallbackList

labelFontList FontList

mapCallback CallbackList

marginHeight short

marginWidth short

noResize Boolean

resizePolicy unsigned-cbAr

0 shaciowType unsigned-char

stringDirection StringDirection

textFontList FontList

textTranslations Translations

uniap~allback CallbackList

Manager Resource Set
Name X i3T. Default

bottomShadowColor Pixel

bottomShadowPi~anap Pixmap UNSPECIFIEDPLXMAP

foreground PiXel

helpCallback CallbackList

Serpent: Stang Reference Manual (CMU/SEI-91-UG-5) 297

Motif Widget Set, Xm-uestionDialog

hiqhIightC o or Pixel black

highlightPi:-znap Pixmap

shadowThickness short

t cpShadow~clior Pixel

toShadowPi znap Pixmap UNSPECFIED_PIXMAP

unitType unsigned-char PIXELS

userData caddrt NULL 0

Composite Resource Set
Name X Tp

i nsertPsitio n OrderProc

Core Resource Set
Name X Default

accelerators Accelerators

ancestcrSensitive Boolean

background Pixel

backgroundPixmnap Pixmap

borderColor Pixel

borderPi.rnap Pixmap

borderWidth Dimension I

co1 ormap Colormap

depth Cardinal

destroyCalIback CallbackList

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

width Dimension

x Position

y Position

translations Translations: <EnterWindow>: Enter()
<Focusln>: Focusln0
Shift<BtnDown>,<Btnl Up>: picko
<BtnlDown>: Arm()

298 Serpent Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmQuestionDialog

<Btnl Up>: Activateo
<Key>Fl: Helpo
<Key>Return: Return()
<Key>KPEnter: Return(
Shift<B tn2Down>,<Btn2Motion>: resizeO
Shift<B m2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0
Shift<Btm2Down>,<Btn2Motion>,<Btn2Up>: resizeO
Shift<Bm3Down>,<B tn3Motion>: move()
Shift<Btm3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveo

Methods

Name Xjypg Default

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resi ze x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 299

Motif Widget Set, XmRowColurn

XmRowColumn

Serpent Name XmRowColumn

include_file: /RowColumn.h
class: RowColumnWidgetClass

widget-type: widget

Description The widget is a general purpose XmRowColumn manager capable of

containing any widget type as a child. In general, XmRowColumn
requires no special knowledge of how its children function and
provides nothing beyond support for several different layout styles.
However, XmRowColumn can be configured as a menu, in which case,
it expects only certain children and it configures to a particular layout.
The menus supported are: MenuBar, Pulldown, or Popup

MenuPanes and OptionMenu.

Attributes

Serpent

Name X Default

allowUserMove Boolean false

allowUserResize Boolean false

isComposite Boolean true

managedWhenCreated Boolean true

met hod MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

300 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

* Motif Widget Set, xmRowcolumn

RowColumn

Name X Typg

adjustLast Boolean

adjustMargin Boolean

entryAlignment unsigned_char

entryBorder short

entryCallback CallbackList

ent ryC lass WidgetClass

isAligned Boolean

isliomogeneous Boolean

labelString String

mapCallback CallbackList

marginHeight Dimension

marginWidth Dimension

menuAccelerator String

menuHelpwidget Widget

menuHistory Widget

mnemonic char

numColunns short

orientation unsigned-char

packing unsignedtchar

popupEnabled Boolean

radioAiwaysOne Boolean

radioBehavior Boolean

resizeHeight Boolean

resizeWidth Boolean
0rowColumnType unsigned_char

spacing short

subMenuld Widget

unmapCallback CallbackList

*whichButton unsigned-int

Serpent: Slang Reference Manual (CMU/SEI-91-UG-S) 301

Motif Widget Set, xrnRowcolurnn ID

RowColumn Special Menu
Namne X Ty~

menuCursor String I

Manager Resource Set
Name X Typ§ Default

bottoxnShadowColor Pixel

bottomShadowPiaap Pixmap UNSPECIFIEDPixmap

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightPi.map Pixmap

shadowThickness short

topShadowColor Pixel

topShadowPi~aap Pixmap UNSPECIFIDPixmap

unitType unsigned-char PIXELS

userData caddr-t NULL

Composite Resource Set
Name X 133e

insertPosition OrderProc

Core Resource Set
Name XymDefault

acce' ,jrators Accelerators

ancestorSensitive Boolean0

background Pixel

background? ixrnap Pixmap

borderColor Pixel

borderPixmap Pixmap

borderWidth Dimension1

colormap Colormap

depth Cardinal

destroyCallback CallbackList

302 Serpent. Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, xmrLowColumn

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

width Dimension

x Position

y Position

translations Translations: Shift<BtnlDown>,<BtnlUp>: pick()
Shift<Btn2Down>,<Bta2Motion>:resize0
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>:resize0
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>:resize0
Shift<Btn3Down>,<Btn3Motion>:move0
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>:move0
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>:move0
<Unmap>: MenuUnmap0
<Focusln>: MenuFocusln0
<FocusOut>:MenuFocusOut0
<EnterWindow>: MenuEnter0
<Key>Left: MenuGadgetTraverseLeft0
<Key>Right: MenuGadgetTraverseRight0
<Key>Up: MenuGadgetTraverseUp0
<Key>Down: MenuGadgetTraverseDown0

Methods
Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BmlDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 303

A

Motif Widget Set, xmScale

XmScale

Serpent Name XmScale

includefile: /Scale.h
class: ScaleWidgetClass

widget-type: widget

Description The xmScale widget is used by an application to indicate a value

from within a range of values, and it allows the user to input or modify
a value from the same range. xmScale has an elongated, rectangular
region similar to that of ScrollBar. Inside this region is a slider that
indicates the current value of XmScale. The user can also modify the
value of XmScale by moving the slider within the rectangular region.
xmScale can also include a set of labels located outside the scale
region. These can indicate the relative value at various positions along
the scale.

Attributes
Serpent

Name XT y Default

allowUserMove Boolean false

allowUserResize Boolean false

met hod MethodName

parent Widget •

selectedX Position 0

selectedY Position 0

widget int

Separator

Name XTT
decimalPoints short

304 Serpent: Slang Reference Manual (CMU/SEI-9 1-UG-5)

• | || | t m • S

* Motif Widget Set, xmScale

dragCallback CallbackList

fontList FontList

*highlightOnEnter Boolean

highlightThickness short

maximnum int

minimum int

*orientation unsigned_char

processingDirection unsigned_char

scaleHeight Dimension

scaleWidth Dimension

*showValue Boolean

titleStrinc String

traversalOn Boolean

value int

*valueChangedCal iback CallbackList scale-callback

Manager Resource Set

Name X T)3pe Default

bottomShadowColor Pixel

bott omShadowP ixrnap Pixmap UNSPECWLED..Yixmap

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

shadowThickne ss short

topShadowPixanap Pixnap UNSPECFIDjPixmap

unitType unsigned_char PiXELS

*userData caddr~t NULL

Composite Resource Set
Name X TyM

insertPosition OrderProc

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 305

Motif Widget Set, XmScale

Core Resource Set

Name X Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundP ixmap Pixmap

borderColor Pixel 0

borderPixmap Pixmap

borderwidth Dimension

colormap Colormap

depth Cardinal S
destroyCallback CallbackList

height Dimension

mappedWhenManaged Boolean

screen S, een S

sensitive Boolean

width Dimension

x Position

y Position 0

translations Translations: Shift<BmlDown>,<BtnlUp>: pick()
Shift<Btm2Down>,<Btn2Motion>: resize0
Shift<Bm2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0
Shift<Btn2Down>,<Bm2Motion>,<Btn2Up>: resize0
Shift<Bm3Down>,<Btn3Motion>: moveo)
Shift<Bm3Down>,<Bm3Motion>,<Leave>,<Btn3Up>: move0
Shift<Bm3Down>,<Btn3Motion>,<Btn3Up>: moveo
<BmlDown>: Arm()
<BtnlUp>: Activateo
<EnterWindow>: Enter()
<Focusln>: FocuslnO

Methods

Name Parameters Description

valuechanqed This method is sent to the dialogue in response to a
user event (typically moving a slider).

move X, y This method allows the user to move the widget
with the mouse and sends the widget's new x and y
location to the dialogue. 0

306 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmScale

resize x, y, width, height This method allows the user to resize the widget
with the mouse and sends its x and y location and
new width and height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the
widget with the mouse and sends the location of the

point to the dialogue in response to a user event
(typically a shifted BtnlDown).

Serpent: Slang Reference Manual (CMU/SEl-91-UG-5) 307

Motif Widget Set, XmScreenob ject

Xm ScreenObject

Serpent Name XrScreenObject

Description The XmScreenOb ject widget allows for the detection of screen
display IDs: Display size includes height and width. Display type

includes color or black & white.

Attributes
Serpent

Name Xjp

color Boolean

display t

height Dimension

screen Screen

width Dimension

308 Serpent: Slang Reference Manual (CMU/SEI-91 -UG-5)

* Motif Widget Set, XmScrollBar

XmScrollBar

Serpent Name XmScrollBar

include_file: Xm/ScrollBar.h
Class: xcnScrollBarWidgetClass

widget-type: widget

Description The XmScrollBar widget gives the user a means of viewing data that
would not otherwise fit into the available space. The X.scrollbar is

typically located adjacent to some viewing region. The scroilbar
* consists of two rectangular regions-a large one called the scroll

region and a small one called the slider-and two arrows. When the
slider is moved, directly or through the arrows, the viewable data is
scrolled through the viewing region.

Attributes
Serpent

Name x Ly- Default

alJlow~serMove Boolean false

allowUserResize Boolean false

method MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget mnt

* ScroliBar
Name x 1.)a

decrementCallback CallbackList

dragCallback CallbackList

*increment int

Serpent: Slang Reference Manual (CMJISEI-91-UG-5) 309

Motif Widget Set, XmScrollBar

increment'-allback CallbackList

initialDelay mnt

maximumn it

minimum int

orientation unsignedschar

pageDecrementCallback CallbackList

pagelncrement int

pagelncrementCallback CallbackList

processingDirection umsignedchar

repeatDelay int

showArrows Boolean

sliderSize int

toBottomCallback CallbackList

toTopCallback CallbackList

value int

val1ueChangedCal. back CallbackList scroll-callback

Primitive Resource Set

Namne XymDefault

bottomShadowColor Pixel

bottomShadowPixinap Pixtnap UNSPECIFIEDPIXMAP

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightOnEnter Boolean false

highlightPixanap Pixmnap

highlightThickness short 0

shadowThickness short 2

topShadowColor Pixel

topShadowPixmap Pixtnap UNSPECIFI]EDPIXMAP

traversalOn Boolean false

unitType unsignedchar PIXELS

userData caddr _t NULL

accelerators Accelerators

ancestorSensitive Boolean

310 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

* Motif Widget Set, XmScrollBar

background Pixel

backgroundP ixmap Pixnap

* borderColor Pixel

borderPi.map Pixmap

borderWidth Dimension 1

colormap Colormap

* depth Cardinal

destroyCaliback CallbackList

height Dimension

mappedWhenManaged Boolean

* screen Screen

sensitive Boolean

width Dimension

x Position

0 y Position

translations Translations: Shift<BtnlDown>,<BtnlUp>: picko
Shift<Btn2Down>,<Btn2Motion>: resize0
Shift<Btr2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Bm2Up>: resize0

o2 Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Bt3Down>,<Btn3Motion>,<Btn3Up>: move(

Methods

Name Parameters Description

move X, y This method allows the user to move this widget with the
mouse and sends the widget's new x and y location to the
dialogue.

0 resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

valuechanged This method is sent to the dialogue in response to a user
event (typically moving a slider).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 311

Motif Widget Set, XScrolledWindow

XmScrolledWindow

Serpent Name XmScrolledWindow

includefile: Xm/ScrolledW.h
class: =nScro11edWindowWidgetClass

widget-type: widget

Description The XmScrolledWindow widget combines one or more ScrollBar

widgets and a viewing area to implement a visible window onto some
other (usually larger) data display. The visible part of the window can
be scrolled through the larger display by the use of ScrollBars.

Attributes
Serpent

Name X Default 0

allowUserMove Boolean false

allowUserResize Boolean false

met hod MethodName

parent Widget 0

selectedX Position 0

selectedY Position 0

widget int

ScrolledWindow Resource Set
Name

clipWindow Widget

horizontalScroilBar Widget S
scrollBarDisplayPolicy unsignedchar

scrollBarPlacement unsigned-char

s crol ledWindowMa rginHe ightDimesion

312 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

I Motif Widget Set, xmscroliedWindow

scrcJ.ledWindowMarginWidthDelsiofl

scrollingpolicy unsigned-char

*spacing int

verticaIScroliBar Widget

visualPolicy unsigned-char

workWindow Widget

Manager Resource Set

Name X T)Me Default

bottoxnShadowColor Pixel

5bottomShadowPi~aap Pixmap UNSPECIFIEDP[XMAP

foreground Pixel

heIp~allback CallbackList

highlight.Color Pixel black

1highlightPi:.nap Pixmnap

shadowThicknes s short

topShadowColor Pixel

topShadowFixtnap Pixmap UNSPECIFIDP[XMAP

5unit Type unsigned~char PDXELS

userData caddr-t NULL

* Composite Resource Set

NamneX y

insert~osition OrderProc

p Core Resource Set
Namne X Type Default

accelerators Accelerators

ancestorSensitive Boolean

*background Pixel

backgroundPixtnap Pixmap

borderColor Pixel

borderPi~anap Pixmnap

* borderWidth Dimension

Serpent: Slang Reference Man-,al (CMU/SE1-91-UG-5) 313

Motif Widget Set, XmScrolledWindow

colormap Colormap

depth Cardinal

destroyCalIback CallbackList

height Dimension

mappedWhenManaged Boolean

screen Screen

sensitive Boolean

width Dimension

x Position

y Position

translations Translations: Shift<BtnlDown>,<BtnlUp>: picko
Shift<Btm2Down>,<Btn2Motion>: resizeO
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize0
Shift<Btn3Down>,<Btn3Motion>: moveo
Shift<Bin3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Bm3Up>: move()

Methods

Name Parameters Description

move X, y This method allows the user to move this widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

314 Serpent: Slang Reference Manual (CMUI/SEI-91-UG-5)

Motif Widget Set, XmSeparator

XmSeparator

Serpent Name XmSeparator

includefile: Xm/Separator.h

class: XmSeparatorWidgetClass

widget-type: widget

Description The xmSeparator widget is a primitive widget that separates items
in a display. Several different line drawing styles are provided, as well
as horizontal and vertical orientation.

Attributes
Serpent

Name X Typ Default

a1owU erMove Boolean false

allowUserResize Boolean false

method MethodName serpdef

parent Widget

selectedX Position 0

selectedY Position 0

widget int

Separator short

orientation unsignedchar

separator.ype unsignedchar

Primitive Resource Set

Name XjyM Default

bottomShadowColor Pixel

bottomShadowPixnap Pixmap UNSPECIFIED_PIXMAP

foreground Pixel

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 315

Motif Widget Set, xxseparator

helpCallback CallbackList

highlightColor Pixel black

highlightOnEnter Boolean false

highlightPixcnap Pixniap

highlightThickness short 0

shadowThickness short 2

topShadowColor Pixel

topShadowPixcnap Pixinap UNSPECIFI]EDP1XMAP

traversalOn Boolean false

unit Type unsignedschar PIXELS

userData caddr-t NULL

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

background? ixaap Pixinap

borderColor Pixel

border'imaap Pixniap

borderWidth Dimension1

colormap Colormap

depth Cardinal

de stroyCaliback CallbackList

height Dimension

mappedWherimanaged Boolean

screen Screen

sensitive Boolean

width Dimension

X Position

y Position

transl1at ions Translations: Shift<BtnlDown>,<BtnlUp>: pick()
Sbift<Btm2Dowa>,<Btn.2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<BtnL2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: moveo
Shift<Bmn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveG

316 Serpent.- Slang Reference Manual (CMIJ/SEI-91I-UG-5)

Motif Widget Set, XmSeparator

Methods
Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtalDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 317

Motif Widget Set, XmText

XmText

Serpent Name XmText

includefile: Xm/Text.h
class: TextWidgetClass

widget-type: widget
checkroutine: checkMText

Description The XmText widget provides a single and multi-line text editor for

customizing both user and program interfaces. It can be used for
single-line string entry, forms entry with verification procedures, and
full-window editing. It provides an application with a consistent
editing system for textual data. The screen's textual data adjusts to the

application writer's needs.

Attributes

Serpent

Name X iTp Default

allowUserMove Boolean false 4

allowUserResize Boolean false

method MethodName

parent Widget

sendBuffer Boolean
selectedX Position 0

selectedY Position 0

widget int

Text

Name X Typ

activateCallback CallbackList

autoShowCursorPosition Boolean

318 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

* Motif Widget Set, XmText

cursorPosition TextPosition

editable Booleani

*editMode t

focusCailback CallbackList

losingFocusCallback CallbackList

marginHeight short

*marginwidth short

maxLength int

modi fyVeri fyCailback CallbackList

motionVerifyCailback CallbackList

*topPosition TextPosition

value String

valueChangedCallback CallbackList

0 Text Input
NameX y

pendingDelete Boolean

selectionArray Pointer

oselectThreshold imt

Text Output

Namne X Type

blinkRate int

colums short

cursorPositionVisible Boolean

fontList FontList

resizeHeight Boolean

resizeWidth Boolean

rows short

wordWrap Boolean

Text Scrolled Text
Name X T33pg

scrollHorizontal Boolean

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 319

Motif Widget Set, XmText

scrollLeftSide Boolean

scroliTopSide Boolean

scrollvertica. Boolean

Primitive Resource Set

Namne X 1Tpe Default

bottomShadowColor Pixel

bottomShadowPicap Pixinap UNSPECIFIEDPixmap

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightOnEnter Boolean false

highlightPixanap Pixmap

highlightThickness short 0

shadowThickness short 20

topShadowColor Pixel

topShadowPixanap Pixmap UNSPECIFIDPixmap

traversalOn Boolean

Techde f false

unit Type unsigned_char PIXELS

userData caddr-t NULL

Core Resource Set
Name X Tye Default

accelerators Accelerators

ancestorSensitive Boolean

background Pixel0

backgroundPizanap Pixmap

borderColor Pixel

borderPiyanap Pixmap

borderWidth Dimension1

colormap Colormap

depth Cardinal

destroyCallback CallbackList

320 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

p Motif Widget Set, XmText

height Dimension

mappedWherianaged Boolean

screen Screen

sensitive Boolean

width Dimension

x Position

y Position

translations Translations: Shift<Key>Tab: tab()
CtrlkKey>Tab:next-tab-group()
<Key>Tab:next-tab-group()
<Key>Up:traverse-prev()
<Key>Down:traverse-next()
<Key>Home:traverse-home()
CtrlkKey>Rightforward-word()
Shift<Key>Right: key-select(right)
<Key>Right:forward-character()
CtrlkKey>Left:backward-word()
Shift<.Key>Left:key-select(left)
<Key>Left:backward-character()
Shift<Key>Delete: delete-previous-word()
<Key>Delete:delete-previous-character()
Shift<Key>Linefeed:delete-next-word()
<.Key>Linefeed:delete-next-character()
Shift<Key>F 1 3:delete-next-word()
<Key>F13:delete-next-charactero)
Shift<Key>BackSpace:delete-previous-word()
<Key>BackSpace:delete-previous-character()
<Key>Return:activate() send()
-Ctrl <Key>:self-insert()
ShiftvBtnlDown>,<BtmlUp>: picko
Shift<Bm.2Down>,<Btn2Motion>: resize()
Shift<Btm2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btm3Motion>,<Bta3Up>: move()
<BtnlDown>: grab-focus()
Button I <PtrMoved>: extend-adjust()
<BtnlUp>: extend-endo
<Btn2Down>: secondary-start()
Button2<PtrMoved>: secondary-adjust()
CtrlkBtn2Up>: move-too secondary-end-and-killo
<Bta2Up>: copy-too secondary-end()
<ClientMessage>: sercondary-stuff() remote-kill-selection()
<Leave Window>: leave()

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 321

Motif Widget Set, XmText

<Focusln>: focusln0
<FocusOut>: focusOut0
<Unmap>: unmap0

Methods

Name Parameter Description

move X, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

send value This method is returned when the sendbuffer flag is
set to true by the dialogue, or when there is a translation
table action.

tab This method is sent to the dialogue in response to a shifted
tab.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown). S

322 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmToggleButton

XmToggleButton

Serpent Name XmToggleButton

include file: ToggleB.h

class xmToggleButtonWidgetCiass

widget-type: widget

Description The XmToggleButton widget presents a choice of values (such as
ye, or no) to the user. When the user selects a toggle button, its value

remains in use until another choice is toggled. Usually this widget

consists of an indicator (square or diamond) with either text or a
pixmap to its right. However, it can also consist of just text or a pixmap

without the indicator.

Attributes

Serpent

Name X Type Default

allowUserMove Boolean false

allowUserResize Boolean false

method MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

ToggleButton CallbackList

disarmCallback CallbackList

fillOnSelect Boolean

indicatorOn Boolean

indicatorType unsigned_char

selectColor Pixel

selectPixmap Pixmap

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 323

Motif Widget Set, XmToggleButton0

set Boolean

spacing short

va lueChangedCallback CallbackList togglescallback

visibleWhenOff Boolean

Label Resource Set
Narne 0 y

accelerator String

acceleratorText String

al.i gnment unsigned-char

fontList FontList

labelInsensitivePixanap Pixm~ap

labelPixanap Pixmap

lab,:UString String

labelType unsignedschar

marginBottom short

marginHeight short

marginLeft short

marginRight short
marginTop short

marginWidth short

mnemonic char

recomputeSize Boolean0

stringDirect ion StringDirection

Primitive Resource Set
Namne XLgDefault0

bottomShadowColor Pixel

bottomShadow~ixanap Pixnap UNSPECIFIEDPIXMAP

foreground Pixel

helpCallback CallbackList

highlightColor Pixel black

highlightOnEnter Boolean false

highlightPixamap Pixmap

324 Serpent: Slang Reference Manu~al (CMU/SEI-9 I-UG-5)

* Motif Widget Set, XmToggleButton

highlightThickness short 0

shadowThickness short 2

*topShadowColor Pixel

topShadowPixonap Pixtuap UNSPECIFIEDPIXMAP

traversalOn Boolean false

unit Type unsigned_char PIXELS

*userData caddr-t NULL

accele~iators Accelerators

ancestorSensitive Boolean

background Pixel

*backgroundPixmap Pixmap

borderColor Pixel

borderPi~aap Pixmap

borderWidth Dimension1

*colormap Colormap

depth Cardinal

destroyCallback. CallbackList

height Dimension

*mappedWhenManaS-d Boolean

screen Screen

sensitive Boolean

width Dimension

X Position

y Position

translat ions Translations: Shift<BtnlDown>,<BtnlUp>: pick()
Shift<Btn2Down.>,Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()

0 Shift<Btn2Dowu>,<Btna2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shif,<Btn3Down>,<Btn3Motioi>,<Btn3Up>: move()
<Bti iDown>: Arm()

* <BtnlUp>: Select() Disarm()
<Key>Return: ArmAndActivate()
<Keyz~space: ArmAndActivate()
<EnterWindow>: Enter()
<LeaveWindow>: Leave()

Serpent: Slang Reference Manual (CMtJISEI-91-UG-5) 325

Motif Widget Set, XmToggleButton

Methods
Name Parameters Description

Move x, y This method allows the user to move the widget wit~h the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location, and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtnlDown).

toggle set This method sends the new value of the toggle button to
the user when the button is pressed.

326 Serpent. Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmTopLevelShell

XmTopLevelShell

Serpent Name XmTopLevelShell

include-file X11 /Shell.h

class: applicationShellWidgetClass

widget-type: shell

Description The XmTopLevelShell widget is the standard user shell. It is used

for normal top-level windows and mediates the interaction between

the widgets and the window manager.

Attributes
TopLevelShell

Name XType

iconic Boolean

iconName String

VendorShell unsignedchar

keyboardFocusPolicy unsignedchar

mwmfDecorations int

mwmFunctions int

mwmInputMode int

mwmMenu String

shellUnitType unsigned_char

WMShell int

iconMask Pixmap

iconPimap Pixmap

iconWindow Window

iconX int

iconY int

initialState int

input Boolean

Serpent: Slang Reference Manual (CMUISEI-91-UG-5) 327

Motif Widget Set, XMTopLevelShell

max.AspectX int

may-AspectY it

maxiieialit imt

maxWidth it

min.AspectX ilt

minAspectY ilt

minHeight int

minWidth int

title char-star

transient Boolean

waitForWrn Boolean

widthlnc int

windowGroup XLD

wmTizneout int

Shell Resource Set
Name X 1vpe

allowShellResize Boolean

createPopupChildProc Boolean

geometry caddr-t

o--errideRedirect Boolean

popdownCallback caddr-t

popupCallback caddr-t0

saveUnder Boolean

Composite Resource Set
Name m

insertPosition OrderProc

acctA erators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPixonap Pixmnap

bcorderColor Pixel

borderPixanap Pixmap

328 Serpent. Slang Reference Manual (CMU/SEI-9 1-UG-5)

Motif Widget Set, XmTopLevelShell

borderWidth Dimension 1

colormap Colormap

denth Cardinal

destroyCallback CallbackList

height Dimension

mappedWhernManage. Boolean

screen Screen

sensitive Boolean

width Dimension

x Position

y Position

translations Translations: Shift<Btn2Down>,<Btn2Motion>: resizeO
Shift<Btm2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resizeO
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize0
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: moveo

Methods

Name Parameters Default

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 329

Motif Widget Set, XmWarningDialog

XmWarningDialog
l

Serpent Name XmWarningDialog

includefile: Xm/MessageB.h
class: xmMessageBoxWidgetClass

widget-type: widget

Description The XWarningDialog widget is aMessageBox created with a
convenience routine. This dialogue is used to warn a user of the
consequences of some action. The dialogue box comes with three

buttons: OK, Cancel, and Help. The default symbol is an exclamation
point.

Attributes

Serpent

Name X Default

allowUserMove Boolean false

allowUserResize Boolean false

deactivate Boolean false

isComposite Boolean true

met hod MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

MessageBox CallbackList

cancelLabeiString String

defaultButtonType unsignedchar

dialogType unsigned_char

he1pLabe1String String

messageAlignment unsignedchar

330 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmWarningDialog

messageString String

minimizeButtons Boolean

okCajllback CallbackList

okLabelString String

symbo1Pi~oap Pixmap

BulletinBoard Resource Set

Name Xyp

allowoverlap Booleanl

autoUrimanage Boolean

buttoriFontList FontList

cancelButton Widget

defaultButton Widget

defaultPosition Boolean

dialogStyle unsigned-char

dialogTitle String

focusCallback CallbackList

labelFontList FontList

rnapCallback CallbackList

marginHeight short

marginWidth short

noResize Boolean

resizePolicy unsignedtcnar

shadowType unsigned-char

stringDirection StringDirection

textFontList FontList

0textTranslations Translations

unxnapCallback CallbackList

Manager Resource Set

Name X)!!Default
bottomShadowColor Pixel

bottomShadowPixnap Pixniap UNSPECIFIEDPIXMAP

foreground Pixel

Serpent. Slang Reference Manual (CNMSEI-91-UG-5) 331

Motif Widget Set, XmWarningDialog

helpCallback CallbackList

highlightColor Pixel black

highlightP ixmap Pixmap 0

shadowThickness short

topShadowColor Pixel

topShadowP iraaap Pixmap UNSPECIFIED_PIXMAP

unit Type unsigned-char PIXELS 0

userData caddrt NULL

Composite Resource Set
Name X •

insertPosition OrderProc

Core Resource Set
Name X Typ Default 0

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPixanap Pixmap

borderColor Pixel

borderPixmap Pixmap

borderWidth Dimension 1

colormap Colormap

depth Cardinal

destroyCaliback CallbackList

height Dimension

mappedWhenManaged Boolean 0

screen Screen

sensitive Boolean

width Dimension

x Position •

y Position

translations Translations: <EnterWindow>: Enter()
<Focusln>: FocusInO
Shift<BtnlDown>,<BtnlUp>: pick()

332 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmWarningDialog

<BtnIDown>: Arm()
<BtnlUp>: Activate(
<Key>Fl: Helpo
<Key>Return: Return0
<Key>KPEnter: Return0
Shift<Btn2Down>,<Btn2Motion>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize0
Shift<Btn3Down>,<Btn3Motion>: moveo
Shift<Bm3Down>,<Bm3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Bm3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description

move X, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtalDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 333

Motif Widget Set, XmWorkingDialog

XmWorkingDialog

Serpent Name XmWorkingDialog

includefile: Xm/MessageB.h

class: xmMessageBoxWidgetClass
widget-type: widget

Description The XmWorkingDialog widget is aMessageBox created with a

convenience routine. This dialogue is used to notify a user about a
time-consuming operation in progress. The dialogue box comes with
three buttons: OK, Cancel, and Help. The default symbol is an
hourglass.

Attributes
Serpent

Name XIype Default

allowU serMove Boolean false

allowUserResize Boolean false

deactivate Boolean false

isComposite Boolean false

met hod MethodName

parent Widget

selectedX Position 0

selectedY Position 0

widget int

MessageBox CallbackList

cancelLabelString string

defaultButtonType unsigned_char

dialogType unsigned_char

heipLabe1String String

messageAlignment unsignedchar

334 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmWorkingDialog

inessageString String

minimizeButtons Boolean

okCallback CallbackList

okLabelString String

sym~bolP ixmrap Pixmap

BulletinBoard Resource Set
Name X Tvp

allowoverlap Boolean

autoUnxnanage Boolean

buttonFontList FontList

cancelButton Widget

defaultButton Widget

defaultPosition Boolean

dialogStyle unsigned-char

dialogTitle String

focusCallback CallbackList

labelFontList FontList

mapCallback CallbackList

marginHeight short

marginWidth short

noResize Boolean

resizePolicv unsigne~char

shadowType unsigned__char

stringDirection StringDirection

textFontList FontList

textTranslationsa Translations

unmapCallback CallbackList

Manager Resource Set
Name X Typw Default

bottomShadowColor Pixel

bottomShadowPixtnap Pixmap UNSPECIFIDPIXMAP

foreground Pixel

Serpent: Slang Reference Manual (CMUISEI-91-UG-5) 335

Motif Widget Set, XznWorkingDialog

helpCallback CallbackList

highlightColor Pixel black

highlightPi.%map Pixmap

shadowThickness short

topShadowColor Pixel

topShadowPi~nap Pixmap UNSPECIFIDPIXMAP

unit Type unsignedschar PIXELS

userData caddr-t NULL

Composite Resource Set
Name X iylp~e

inseriPosition OrderProc

Core Resource Set
Namne X TYpe Default0

accelerators Accelerators

ancestorSensitive Boolean

background Pixel

backgroundPixanap Pixniap

borderColor Pixel

borderPicnap Pixmap

borderWidth Dimension1

colormap Colormap

depth Cardinal

destroyCallback CallbackList

height Dimension

mappedWhenManaged Boolean
screen Screen

sensitive Boolean

width Dimension

X Position

y Position

translations Translations: <EnterWindow>: Enter()
<Focusln>: Focusln()
Shift<BtnIDown>,<BtnlUp>: pick()

336 Serpent: Slang Reference Mansi (CUISEI-9 1-UG-5)

<BtnlDown>: Arm()
<BtnlUp>: Activateo
<Key>Fl: Help()
<Key>Return: Returno:
<Key>KPEnter: Return()
Shift<Btn2Down>,<Btn2Motion>: resize(
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize0
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize0
Shift<Btn3Down>,<Btn3Motion>: moveo
Shift<Btm3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: moveo
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description

move x, y This method allows the user to move the widget with the
mouse and sends the widget's new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
BtulDown).

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 337

0

0

0

0

0

0

0

0

338 Serpent: Slang Reference Manual (CMUISEI-91-UG-S)

0

Index L
Logical AND and OR operators 53

A
Loop statement 61

Actions "on create" 69 M
Application shared data 47 make-integer, truncate 91
Arithmetic operators 56 Methods 45, 64
Assignment statement 60 mod 92
Attributes 44, 63

B Object instances 44
Base types 37 Object type 36
board 143

R
C Relational operators 55

Character Set 29 Routines 43
Code snippet 59
Comments 29 S

constants 32 Shared data 45

identifiers 31 string-append 78

reserved words 31 stnng count-chars 79

Conditional statement 60 string-delete 80

Constant 43 string-index 81

Context 39 string-insert 82
string-isinteger 83

D string-is-real 84
Dat, elements 46 stringlength 85
Declared data 43 stringjower 86
Definition file 46 string-upper 87
Dependency 37 substring 88

Scope 39
Dependency considerations 70 U

Dialogue shared data 46 Unary operators 58

div 90 Undefined values 53

Documentation 2 V

E View controllers 67

Equality operators 54 Visible 39

Extent 42 X

F XawBboard 143

Function call 59 XawBox 146
XawCommand 149
XawDialog 153

Identifiers 31 XawForm 156
Implications of dependencies 100 XawLabel 159
Instances 43 XawMenuButton 162

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 339

XawMenuShell 165 XmWorkingDialog 334
XawPaned 168
XawScreenObject 203
XawScrollbar 173
XawSimpleMenu 176
XawSimpleMenuBSB 165
XawSmeLine 182
XawText 185
XawTextentiy 185
XawToggleButton 195
XawTopLevelShel 199
XawViewport 201
XmArrowButtori 207
XmBulletinBoard 11-0
XmCascadeButton 214
XmComimand 218
XmDrawingArea 223
XmDraw-nButton 226
XmEriorDialog 2300
XmFileSelectionBox 234
XmForm 239
XmFrame 243
XrnlnformationDialog 246
XmLabel 2500
XmList 253
XniMainWindow 258
XmMenubar 262
XrnMenuShell 266
XrwMcsz~geBox 269
XmMessageDialog 273
XmOption 277
XmPaned Window 281
XmPopup 284
XniPulldown 288
XmPushButton 292
XmQuestionDialog 296
XmRowColunm 300
XmScale 304
XrnScreenObject 308

XmSi~ifar309
XmScrolledWindow 312
XmSeparator 315
XmText 318
XmToggleButton 323
XmTopLevelShell 327
XmWarningDialog 330

340 Serpent: Slang Reference Manual (CMUISEI-91-UG-S)

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF TIS PAGE

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE Zh.GS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCIEEDULJ- Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBEIR (S 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-91 -UG-5 CMU/SEI-91 -UG-5

6a..NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Sof!ware Engineering Institute (if applicable) SEI Joint Program Office
SEI

6c. ADDRESS (C-ty. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

8s NAME OFFU NDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable) F1962890C0003
SEI Joint Program Office ESD/AVS

8c. ADDRESS (City, State and ZIP Code) 10. SOT rRCE r' FUNDING NOS.

Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT

Pittsburgh PA 15213 ELEMENT NO NO. NO NO.

63752F N/A N/A N/A
II TITLE (Include Secunty Classification)

Serpent: Slang Reverence Manual

12. PERSONAL AUTHOR(S)

SEt User Interace Project

13a. TYPE OF REPORT 13b. TIfE COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUN-

Final FROM ro May 1991 -350
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of ne~cssairy and identify by block number)

FIELD GROUP SUB. GR. Serpent, UIMS, user interface management system, user

A interface generators, Slang, dialogue

19. ABSTRACT (Continue on reverse if necesary and ideitify by block number)

Serpent is a user interface management system (UIMS) that supports the development and imple-
mentation of user interfaces, providing an editor to specify the user interface and a runtime system
that enables communication between the application and the end user. This manual describes the
model, syntax, and semantics of the Slang dialogue language, the language within Serpent used for
the specification of user interfaces. Readers should be familiar with general UIMS concepts, have a
working knowledge of programming languages, and understand the concepts described in Serpent
Overview and Serpent: System Guide.

(please turn over)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED l SAME AS RPT 5 DTIC USERS * Unclassified, Unlimited Distribution

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL

John S. Herman, Capt, USAF (412) 268-7630 ESD/AVS (SEI JPO)

DD FORM 1473, 83 APR EDITION of I JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF TIlS

0
BSThACT -caninucd frau page one, block 19

0

0

0

0

0

0

0

0

0

6

